
An Infrastructure for Efficient
Synchronization of Asymmetric Threads
on Hyper-Threaded Processors

Nikos Anastopoulos, Nectarios Koziris1

Computing Systems Laboratory, School of Electrical and Computer Engineering,
National Technical University of Athens, Zografou Campus, Zografou 15780, Greece

ABSTRACT

So far, the privileged instructions MONITOR and MWAIT introduced with Intel Prescott core,

have been used mostly for inter-thread synchronization in operating systems code. In a hyper-

threaded processor, these instructions offer a “performance-optimized” way for threads involved

in synchronization events to wait on a condition. In this work, we explore the potential of using

these instructions for synchronizing application threads on hyper-threaded processors which are

characterized by workload imbalance.

Initially, we propose a framework through which one can use MONITOR/MWAIT to build

condition wait and notification primitives, with minimal kernel involvement. Then, we evaluate

the efficiency of these primitives in an incremental manner: at first, we quantify certain perfor-

mance aspects of the primitives that reflect the considered execution model, such as resource con-
sumption and responsiveness. As a further step, we use our primitives to build synchronization

barriers. We examine the same performance issues as before, and we evaluate also the efficiency

of our implementation for fine-grained inter-thread synchronization. Finally, we test our barriers

in a real-world scenario, and specifically, in applying thread-level Speculative Precomputation.

For the application model under consideration, our proposed primitives is the option that best

balances low resource consumption with high responsiveness and reduced call overhead.

1 Introduction

Simultaneous Multithreading (SMT) [TEL95] allows a superscalar processor to issue instruc-
tions from multiple independent threads to its functional units, in a single cycle. Hyper-
threading technology [MBH+02] is Intel’s two-threaded, low-end approach to SMT. In a
hyper-threaded processor, almost all resources are shared, and only the architectural state,
along with any control-flow related structures, are replicated for each thread.
In such an “all-shared” environment, implementation of synchronization is a key fac-

tor for multithreaded performance. Synchronization primitives based on spin-wait loops
have been commonplace in traditional multi-processor systems, but can incur significant
performance penalty in an SMT environment, especially when one or more threads wait

1E-mail: {anastop,nkoziris}@cslab.ece.ntua.gr



on synchronization events for long periods. Although hardware extensions have been pro-
posed for SMT to support low-latency, resource-friendly synchronization [TLEL99], unfor-
tunately hyper-threading does not provide similar mechanisms. There are other techniques
that could be employed in order to mitigate the excessive resource consumption of spin
loops, which, however, lack high responsiveness.
A first option would be primitives that resort to OS mediation to handle long condition-

wait periods. The waiting thread would yield its logical processor and release all its re-
sources, but its notification and resumption would be expensive in terms of cycles, due to
the invocation of the scheduler. A second solution would be to loosen the spinning by em-
bedding the PAUSE instruction in the spin-wait loop. Although in this way the waiting
thread is prevented from aggressively consuming dynamically shared resources, the cost
of spinning is not entirely eliminated because the thread still holds its share of entries in
the statically partitioned queues. A third approach would be to use the HALT instruction,
through which a thread can go to sleeping mode making all its statically and dynamically
shared resources available to the peer context. However, kernel privileges are required to
execute HALT and to notify the sleeping thread, which translates into system call overhead.
Intel’s Prescott core introduced a newpair of instructions, MONITOR andMWAIT,which

implement a condition-wait as close as possible to the hardware level: MWAIT enables a log-
ical processor to enter into a “performance-optimized” state while waiting for a single store
to the address range set up by MONITOR. MONITOR/MWAIT are similar with HALT in
that they release all shared and partitioned resources of a hyper-thread, and require kernel
privileges. However, they obviate the need for expensive IPI delivery to exit the sleeping
state, since they require just a single memory update for this purpose. In this work we ex-
plore the potential of usingMONITOR/MWAIT to synchronize application-level threads on
hyper-threaded processors, with imbalanced workloads.

2 Framework for Implementing Synchronization Primitives

In their initial implementation, MONITOR and MWAIT are available at privilege level 0
only. Therefore, in order to be able to implement a condition-wait primitive to be used at the
application level, a system call just to access these instructions is unavoidable. What comes
next in terms of extra cost, is the way that condition-wait (occurring always at kernel-space)
and notification primitives communicate each other the contents of the triggering address.
In order to establish the fastest possible communication between kernel and user-space,

we allocate the monitored memory region (a cache-line sized region, actually) in the context
of a special character device in kernel-space, and then map the device to user-space. The
memory region can be then directly accessed both from kernel and user-space, without any
redundant copy operations or additional system calls.
After that, the implementation of a system call that uses MONITOR and MWAIT is

straightforward. We extended the Linux kernel with the mwmon_mmap_sleep system call,
which implements the condition-wait primitive. A typical program should make the fol-
lowing steps in order to use our proposed primitives: at initialization phase, the program
should open the special device for read and write, and then mmap it in its address space. A
thread that wishes to wait on a condition, calls mwmon_mmap_sleep. A thread that wishes
to notify the waiting thread, sets a random byte within the monitored memory region to a
pre-defined value. At finalization, the program unmaps and then closes the device.



3 Performance Evaluation

Throughout our work, we have considered an application model where two asymmetric
threads are executing on the two contexts of a hyper-threaded processor. One of the two
threads is the heavyweight (or worker), performing computations throughout its entire exe-
cution, and the other is the lightweight (or helper), whose execution alternates between short
periods of useful work and long idle periods. When in idle mode, the lightweight thread
waits until it is notified by the heavyweight before proceeding. An example of this execu-
tion scenario is depicted in Fig. 3, where threads are synchronized with barriers.

worker

thread

helper

thread

exit

barrier1

exit

barrier2

exit

barrier3

busy period

idle period

barrier

Figure 1: Application model under consideration.

Three requirements must be met in order synchronization to be effective for this execu-
tion model: first, the helper thread must not introduce significant impediment to the worker
thread while waiting, by excessively consuming shared resources. Second, the helper thread
must resume as fast as possible each time it is notified by the worker, in order its actions to be
timely and accurate. Finally, the time that the main thread needs to invoke a synchronization
primitive in order to notify the helper, must be as little as possible. Since these requirements
are normally conflicting, we look for an option that best balances them.
We compared ourMONITOR/MWAIT-based synchronization mechanisms (mwmon) with

implementations based on spin-wait loops with the PAUSE instruction (spin-loops), spin-wait
loops with the HALT instruction (spin-loops-halt), and synchronization primitives offered by
the NPTL library (pthreads). We experimented on an Intel Xeon processor, one of the first
mainstream chips to encompass low-end SMT capabilities.
The evaluation process followed a bottom-up approach: First, we measured raw per-

formance of condition-wait and notification primitives by measuring performance aspects
such as resource consumption and responsiveness. While spin-loops version provided best
response times, as expected, it decelerated the worker thread significantly. Among the rest
implementations, which were the most resource-conserving ones, mwmon was the option
with the lowest wakeup times and call overhead.
As a second step, we used our primitives to build synchronization barriers. Again, mw-

mon offered the best combination of low resource consumption, high responsiveness and
low call overhead. With respect to spin-loops, the waiting thread in mwmon introduced 24%
less interference to the main thread. Compared to pthreads, which was the best option among
the three most resource-friendly versions, it provided almost 4 times lower wakeup latency



and 3.46 times reduced call overhead. In a fine-grained synchronization scenario, where
threads with small, yet varying workloads were synchronized in a loop, the mwmon imple-
mentation outperformed all other versions in terms of throughput, for all levels of threads
asymmetry. On average, it yielded 12% and 26% better throughput compared to pthreads and
spin-loops, respectively.
Finally, we evaluated the various barrier implementations in applying Speculative Pre-

computation (SPR) on a series of real-world applications. In SPR, a helper runs ahead and
prefetches data that are going to be used by the worker in its near future. Whenever it has
prefetched a certain amount of data, it is throttled, so that it is prevented from running too
far ahead and polluting the cache. This synchronization can be implemented with barriers,
reflecting the execution scheme of Fig. 3. The reader is referred to [AAKK08] for a more de-
tailed discussion on our implementation of SPR. SPR using mwmon barriers outperformed
all other cases and offered speedups between 1.07 and 1.35. On average, it yielded 15% better
execution times compared to spin-loops, and 3.6% compared to pthreads.

4 Future Work

As a future work, we intend to extend our framework in order to support MONITOR/
MWAIT-based synchronization in multi-SMT systems, following hierarchical schemes (e.g.
tree barriers). Additionally, we intend to evaluate our primitives on parallel programs with
requirements for fine-grained synchronization, and on other application models that reflect
our considered execution scheme, such as MPI programs or I/O bound multithreaded ap-
plications. We argue that, with the advent of hybrid architectures that encompass multitude
of hardware contexts within a single chip, architecture-aware hierarchical synchronization
schemes will play a significant role in parallel application performance and thus seem to be
worthwhile to investigate.

References

[AAKK08] E. Athanasaki, N. Anastopoulos, K. Kourtis, and N. Koziris. Exploring the per-
formance limits of simultaneous multithreading for memory intensive applica-
tions. J. Supercomput., 44(1):64–97, 2008.

[MBH+02] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller, andM. Upton. Hyper-
threading technology architecture and microarchitecture. Intel Technology Jour-
nal, Feb 2002.

[TEL95] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithreading: Maximizing
on-chip parallelism. In ISCA ’95: Proceedings of the 22th annual international sym-
posium on Computer architecture, pages 392–403, 1995.

[TLEL99] D. Tullsen, J. Lo, S. Eggers, and H. Levy. Supporting fine-grained synchroniza-
tion on a simultaneous multithreading processor. In HPCA ’99: Proceedings of
the IEEE 5th International Symposium on High Performance Computer Architecture,
page 54, 1999.


	Introduction
	Framework for Implementing Synchronization Primitives
	Performance Evaluation
	Future Work

