
Implementing basic primitives with  
MONITOR/MWAIT
Where to allocate the region to be monitored?

in user-space: fast notification, but requires copying 
the contents of monitored region to kernel-space on 
each condition check

in kernel-space: requires additional system call to 
enable update of monitored memory from user-space

in kernel-space, but map it to user-space for direct 
access
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Motivation

The privileged instructions MONITOR/MWAIT 
introduced with Intel Prescott core, offer a 
“performance-optimized” way for threads involved
in synchronization events to wait on a condition. 
So far, they have been used mostly for inter-thread 
synchronization in operating systems code. 
In this work, we explore the potential of using
these instructions for synchronizing application 
threads on hyper-threaded processors which are
characterized by workload imbalance.

Experimental evaluation
System configuration:

Intel Xeon@2.8GHz, 2 hyper-threads
Linux 2.6.13, gcc-4.12, glibc-2.5

Case 1: Barriers – raw performance

Case 2: Barriers – fine-grained 
synchronization

Case 3: Barriers – Speculative 
Precomputation (SPR)

SPR: thread-based prefetching of top L2 cache-
missing loads. In each phase, the helper prefetches 
for the next phase, filling up to ½ of the L2 cache, and 
it is then throttled. 
Good SPR performance can be achieved under good 
miss coverage from helper, and minimal synchroniza-
tion overhead and resource contention for worker.

Options for synchronization
spin-wait loops: they provide high responsiveness, 

but consume significant resources. Even if we loosen 
the spinning of helper using PAUSE, the worker still 
experiences notable interference (15-20% on 
average). The reason is that not all resources are 
released (i.e. the statically partitioned ones).

spin-wait loops w/ HALT: the spinning thread halts, 
and partitioned resources are recombined for full use 
by the worker. Executing HALT and sending inter-
processor interrupts to wake up the sleeping thread 
require kernel privileges, which translate into system 
call overhead.

explicit processor yield: e.g., through Pthreads 
condition-wait primitives. The helper is de-scheduled 
and suspended in the kernel, and the processor 
switches to single-threaded mode (all resources 
available for worker). OS scheduler intervention incurs 
high notification and resumption latency.

MONITOR/MWAIT loops: MONITOR arms special 
hardware to monitor an address range for writes, 
MWAIT causes the calling logical processor to enter 
an “optimized ” state until a write to the specified 
address range (or interrupt, exception, fault) occurs.

- condition-wait close to the hardware
- all resources (shared & partitioned) relinquished
- require kernel privileges, but
- obviate the need for expensive IPIs delivery for 
notification (a single memory update suffices).

Conclusions – Future work
MONITOR/MWAIT-based primitives make the best 
compromise between low resource waste and low call 
and wakeup latency for our considered model. 

Possible directions of our work:
“mwmon”-like hierarchical schemes in multi-SMT 

systems (e.g. tree barriers)
other “producer-consumer” models (disk/network I/O 

applications, MPI programs, etc.)
multithreaded applications with irregular parallelism
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11319
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The application model under 
consideration: a worker and a 
helper thread executing in parallel 
on a hyper-threaded processor. In 
each phase, helper performs only a 
small amount of work which is 
intended to facilitate worker in the 
next phase, and then waits until it is 
notified by worker before 
proceeding. 
In real-world applications, the 
helper could perform e.g. 
speculative precomputation 
(prefetching of future memory 
accesses), network I/O and message 
processing in distributed memory 
applications, etc.

How should synchronization be implemented?
low resource consumption (idle periods may 

dominate execution time of helper) 
worker: fast notification of helper (low call overhead) 
helper: fast resumption (high responsiveness)

while (spinvar!=NOTIFIED){
MONITOR(spinvar,0,0)
MWAIT

}

remap_pfn_range

physical address space

0 2GB

0 2TB

*mwmon_mmap_area
VM space

*mmapped_dev_mem

direct mapping
of physical
memory

page
frame

User space
vmalloc/ioremap space, kernel text
mapping, module mapping space

Establishing fast data exchange between kernel-space and user-space: a page 
frame to host the monitored memory is kmalloc’ed in kernel-space, in the context 
of a special char device (“kmem_mapper”). When the device is mmap’ed in the 
user program, the page is remapped to user-space and can be directly accessed. 
The “mwmon_mmap_area” pointer in kernel-space, and the “mmapped_dev_-
mem” pointer in user-space, both point to the beginning of  the monitored region.

asmlinkage long 
sys_mwmon_mmap_sleep(void)
{

do{
monitor(mwmon_mmap_area,0,0);
mwait(0,0);

} while(*mwmon_mmap_area!=
MWMON_NOTIFIED_VAL);

*mwmon_mmap_area=MWMON_ORIG_VAL;
}

System call interface and use example of our MONITOR/MWAIT-based condition-
wait and notification primitives in a multithreaded program. 

worker thread helper thread

fd = open(“/dev/kmem_mapper”,…)

mmapped_dev_mem = 
mmap(0,PAGE_SIZE,…,fd,PAGE_SIZE)

*mmapped_dev_mem = 
MWMON_NOTIFIED_VAL

mwmon_mmap_sleep()

main
thread

munmap(mmapped_dev_mem,
PAGE_SIZE)

close(fd)

The worker performs a fixed 
amount of work, which is a 
512x512 fp matrix 
multiplication. The helper does 
nothing and waits until it is 
notified, when the worker enters 
its barrier.

Twork: reflects amount of interference introduced by 
helper

Twakeup: responsiveness of wait primitive
Tcall: call-overhead of notification primitive
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The unit of work is considered a 10x10 
matrix multiplication. Within a loop, the 
worker performs always 10 units of 
work.  The helper has a smaller 
workload, ranging between 0 and 10 
units. Both loops iterate for 106 times, 
and successive iterations are 
synchronized with barriers.
Considering the relatively short work 
executed in each iteration, the overall 
completion time reflects the throughput 
of each barrier implementation.
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“mwmon” best balances resource consumption and responsiveness/call overhead. It 
introduces 24% less interference compared to “spin-loops”, and has 4× lower 
wakeup latency and 3.5× lower call overhead w.r.t. “pthreads”. 

Completion times for the 
micro-benchmark of case 2.
Across all levels of 
asymmetry, “mwmon”
outperforms “pthreads”
by 12%  and 
“spin-loops” by 26%.
As threads become symmetric, 
the resource-conserving 
characteristics of “mwmon”
become less important and its 
performance converges with 
that of “spin-loops”.

“mwmon” offers best 
speedups, between 1.07(LU) 
and 1.35(TC). With equal 
miss-coverage ability, it 
succeeds to boost 
“interference-sensitive”
applications such as LU. In 
SV, it offers notable gains even 
though worker is delayed in 
barriers and prefetcher has 
relatively large workload.


