Αρχιτεκτονική Υπολογιστών

Κεφάλαιο #5 (b)

Συστήματα Μνήμης

Διονύσης Πνευματικάτος pnevmati@cslab.ece.ntua.gr

5ο εξάμηνο ΣΗΜΜΥ – Ακαδημαϊκό Έτος: 2019-20 <u>Τμήμα 3 (ΠΑΠΑΔ-Ω)</u>

http://www.cslab.ece.ntua.gr/courses/comparch/

Memory Hierarchy Technology

- Random Access:
 - "Random" is good: access time is the same for all locations
 - DRAM: Dynamic Random Access Memory
 - High density, low power, cheap, slow
 - Dynamic: need to be "refreshed" regularly
 - SRAM: Static Random Access Memory
 - Low density, high power, expensive, fast
 - Static: content will last "forever" (until lose power)
- "Non-so-random" Access Technology:
 - Access time varies from location to location and from time to time
 - Examples: Disk, CDROM, DRAM page-mode access
- Sequential Access Technology: access time linear in location (e.g., Tape)
- The next two lectures will concentrate on random access technology
 - The Main Memory: DRAMs + Caches: SRAMs

Main Memory Background

- Performance of Main Memory:
 - Latency: Cache Miss Penalty
 - Access Time: time between request and word arrives
 - Cycle Time: time between requests
 - Bandwidth: I/O & Large Block Miss Penalty (L2)
- Main Memory is *DRAM* : Dynamic Random Access Memory
 - Dynamic since needs to be refreshed periodically (8 ms)
 - Addresses divided into 2 halves (Memory as a 2D matrix):
 - RAS or Row Access Strobe
 - CAS or Column Access Strobe
- Cache uses SRAM : Static Random Access Memory
 - No refresh (6 transistors/bit vs. 1 transistor) Size: DRAM/SRAM 4-8 Cost/Cycle time: SRAM/DRAM 8-16

Random Access Memory (RAM) Technology

- Why do computer designers need to know about RAM technology?
 - Processor performance is usually limited by memory bandwidth
 - As IC densities increase, lots of memory will fit on processor chip
 - Tailor on-chip memory to specific needs
 - Instruction cache
 - Data cache
 - Write buffer
- What makes RAM different from a bunch of flipflops?
 - Density: RAM is much denser

Static RAM Cell

4. Sense amp on column detects difference between bit and bit

Typical SRAM Organization: 16-word x 4-bit

Logic Diagram of a Typical SRAM

- Write Enable is usually active low (WE_L)
- Din and Dout are combined to save pins:
 - A new control signal, output enable (OE_L) is needed
 - WE_L is asserted (Low), OE_L is disasserted (High)
 - D serves as the data input pin
 - WE_L is disasserted (High), OE_L is asserted (Low)
 - D is the data output pin
 - Both WE_L and OE_L are asserted:
 - Result is unknown. Don't do that!!!
- Although could change VHDL to do what desire, must do the best with what you' ve got (vs. what you need)

Typical SRAM Timing (Asynchronous Handshake)

Problems with SRAM

- Six transistors use up a lot of area
- Consider a "Zero" is stored in the cell:
 - Transistor N1 will try to pull "bit" to 0
 - Transistor P2 will try to pull "bit bar" to 1
- But bit lines are precharged to high: Are P1 and P2 necessary?
 Select = 1

1-Transistor Memory Cell (DRAM)

- Write:
 - 1. Drive bit line
 - 2.. Select row

Read (destructive):

- 1. Precharge bit line to Vdd/2
- 2.. Select row
- 3. Cell and bit line share charges
 - Very small voltage changes on the bit line
- 4. Sense (fancy sense amp)
 - Can detect changes of ~1 million electrons
- 5. Write: restore the value

Refresh

1. Just do a dummy read to every cell.

Οργάνωση της DRAM

DRAM logical organization (4 Mbit)

Square root of bits per RAS/CAS

DRAM physical organization (4 Mbit)

CSLab

Logic Diagram of a Typical DRAM

- Control Signals (RAS_L, CAS_L, WE_L, OE_L) are all active low
- Din and Dout are combined (D):
 - WE_L is asserted (Low), OE_L is disasserted (High)
 - D serves as the data input pin
 - WE_L is disasserted (High), OE_L is asserted (Low)
 - D is the data output pin
- Row and column addresses share the same pins (A)
 - RAS_L goes low: Pins A are latched in as row address
 - CAS_L goes low: Pins A are latched in as column address
 - RAS/CAS edge-sensitive

DRAM Read Timing (Asynchronous Handshake)

DRAM Write Timing (Asynchronous Handshake)

Key DRAM Timing Parameters

- t_{RAC}: minimum time from RAS line falling to the valid data output
 - Quoted as the speed of a DRAM
 - A fast 4Mb DRAM t_{RAC} = 60 ns
- t_{RC}: minimum time from the start of one row access to the start of the next
 - t_{RC} = 110 ns for a 4Mbit DRAM with a t_{RAC} of 60 ns
- t_{CAC}: minimum time from CAS line falling to valid data output
 - 15 ns for a 4Mbit DRAM with a t_{RAC} of 60 ns
- t_{PC}: minimum time from the start of one column access to the start of the next
 - 35 ns for a 4Mbit DRAM with a t_{RAC} of 60 ns

DRAM Performance

- A 60 ns (t_{RAC}) DRAM can
 - perform a row access only every 110 ns (t_{RC})
 - perform column access (t_{CAC}) in 15 ns, but time between column accesses is at least 35 ns (t_{PC}).
 - In practice, external address delays and turning around buses make it 40 to 50 ns
- These times do not include the time to drive the addresses off the microprocessor nor the memory controller overhead.
 - Drive parallel DRAMs, external memory controller, bus to turn around, SIMM module, pins...
 - 180 ns to 250 ns latency from processor to memory is good for a "60 ns" (t_{RAC}) DRAM

Main Memory Performance

CPU/Mux 1 word;

Mux/Cache, Bus,

64 bits & 256 bits)

Memory N words (Alpha:

a. One-word-wide memory organization

• Simple:

CPU, Cache, Bus, Memory same width (32 bits)

c. Interleaved memory organization

Interleaved:

CPU, Cache, Bus 1 word: Memory N Modules (4 Modules); example is *word interleaved*

DRAM Bandwidth

Increasing Bandwidth - Interleaving

Main Memory Performance

Timing model

- 1 to send address,
- 4 for access time, 10 cycle time, 1 to send data
- Cache Block is 4 words
- *Simple M.P.* = 4 x (1+10+1) = 48
- *Wide M.P.* = 1 + 10 + 1 = 12
- Interleaved M.P. = 1+10+1 + 3 = 15

Independent Memory Banks

- How many banks?
 - number banks ≥ number clocks to access word in bank
 - For sequential accesses, otherwise will return to original bank before it has next word ready
- Increasing DRAM sizes => fewer chips => harder to have many banks
 - Growth bits/chip DRAM : 50%-60%/yr

Fast Page Mode Operation

Summary:

- Two Different Types of Locality:
 - Temporal Locality (Locality in Time): If an item is referenced, it will tend to be referenced again soon.
 - Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are close by tend to be referenced soon.
- By taking advantage of the principle of locality:
 - Present the user with as much memory as is available in the cheapest technology.
 - Provide access at the speed offered by the fastest technology.
- DRAM is slow but cheap and dense:
 - Good choice for presenting the user with a BIG memory system
- SRAM is fast but expensive and not very dense:
 - Good choice for providing the user FAST access time.

Memory Width, Interleaving: Παράδειγμα

```
Δίνεται ένα σύστημα με τις ακόλουθες παραμέτρους:
```

Mέγεθος Cache Block = 1 word, Memory bus width = 1 word, Miss rate = 3% Miss penalty = 32 κύκλους : (4 κύκλοι για αποστολή της διεύθυνσης, 24 κύκλοι access time / λέξη, 4 κύκλοι για

αποστολή μιας λέξης) Memory access / εντολή = 1.2 Ιδανικό execution CPI (αγνοώντας τα cache misses) = 2 Miss rate (μέγεθος block=2 word) = 2% Miss rate (μέγεθος block=4 words) = 1%

- To CPI του μηχανήματος με blocks της 1 λέξης = 2 + (1.2 x .03 x 32) = 3.15
- Μεγαλώνοντας το μέγεθος του block σε 2 λέξεις δίνει το ακόλουθο CPI:
 - 32-bit bus και memory, καθόλου interleaving = 2 + (1.2 x .02 x 2 x 32) = 3.54
 - 32-bit bus και memory, interleaved = $2 + (1.2 \times .02 \times (4 + 24 + 8) = 2.86)$
 - 64-bit bus και memory, καθόλου interleaving = $2 + (1.2 \times .02 \times 1 \times .32) = 2.77$
- Μεγαλώνοντας το μέγεθος του block σε 4 λέξεις, δίνει CPI:
 - 32-bit bus και memory, καθόλου interleaving = 2 + (1.2 x 1% x 4 x 32) = 3.54
 - 32-bit bus και memory, interleaved = $2 + (1.2 \times 1\% \times (4 + 24 + 16)) = 2.53$
 - 64-bit bus και memory, καθόλου interleaving = 2 + (1.2 x 2% x 2 x 32) = 2.77