

ミтатіко́ऽ Пара入入п入ıб SIMD－Vector－GPU

 \｛nkoziris，pnevmati\}@cslab.ece.ntua.gr
 2019－20
http：／／www．cslab．ece．ntua．gr／courses／advcomparch／

Flynn's Taxonomy

- Single Instruction stream, Single Data stream: SISD
- Single Instruction/Multiple Data streams: SIMD
- Vector architectures
- Multimedia extensions
- Graphics processor units
- Multiple Instruction/Single Data stream: MISD
- No commercial implementation
- Multiple Instruction/Multiple Data streams: MIMD
- Tightly-coupled MIMD
- Loosely-coupled MIMD

Introduction

- SIMD architectures can exploit significant datalevel parallelism for:
- matrix-oriented scientific computing
- media-oriented image and sound processors
- SIMD is more energy efficient than MIMD
- Only needs to fetch one instruction per data operation
- Makes SIMD attractive for personal mobile devices
- SIMD allows programmer to continue to think sequentially

SIMD Parallelism

- Vector architectures
- SIMD extensions
- Graphics Processor Units (GPUs)
- For x86 processors:
- Expect two additional cores per chip per year
- SIMD width to double every four years
- Potential speedup from SIMD to be twice that from MIMD!

Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD:
Assumes that two cores per chip for MIMD are added every two years and the number of operations for SIMD will double every four years.

SIMD

- SIMD = Single Instruction, Multiple Data
- (a) sub-word parallelism (RBG pixel = 3 bytes)
- Assume wide, multi-item registers
- add rd, rs, rt produces multiple results!
- Fewer instructions, fewer branches!
- Hard for compiler to use, hand code libraries mostly!
- Intel MMX, SSD\{1-4\}, AVX,...
- (b) wide registers: Vector Processing
- Other options:
- Typical pipelines: SISD
- Parallel programs: MIMD

Blue/Green Screen Effects

They used to use blue screen back in the day starwarsfacts

MMX example: blue screen image merging

- Array X (blue screen), Y (background), 16-bit pixels
- Result in X
- X86 loop:

CMP X[i], BLUE
; Check if blue
JNE next_pixel ;If not, skip ahead
MOV X[i], Y[i] ;If blue, use second image

+ loop control

MMX example: blue screen image merging

MOV MM1, X[i] ;Make a copy of X[i]
; Check X, make mask
PCMPEQW MM1, BLUE
; clear non-blue Y pixels
PAND Y[i], MM1

; Zero out blue pixels in X
PANDN MM1, X[i]

; Combine two images

- Process 4 pixels per instruction
- MMX $=4$ results per loop iterations (5 instructions)
- Eliminate test branch!
- Speed: >= $2.5 x$

SIMD Extensions (short vectors)

- Media applications operate on data types narrower than the native word size
- Example: disconnect carry chains to "partition" adder
- Limitations, compared to vector instructions:
- Number of data operands encoded into op code
- No sophisticated addressing modes (strided, scattergather)
- No mask registers

SIMD Implementations

- Implementations:
- Intel MMX (1996)
- Eight 8-bit integer ops or four 16-bit integer ops
- Streaming SIMD Extensions (SSE) (1999)
- Eight 16-bit integer ops
- Four 32-bit integer/fp ops or two 64-bit integer/fp ops
- Advanced Vector Extensions (2010)
- Four 64-bit integer/fp ops
- Operands must be consecutive and aligned memory locations
- Generally designed to accelerate carefully written libraries rather than for compilers
- Advantages over vector architecture:
- Cost little to add to the standard ALU and easy to implement
- Require little extra state \rightarrow easy for context-switch
- Require little extra memory bandwidth
- No virtual memory problem of cross-page access and page-fault

Example SIMD Code

- Example DXPY:

L.D	F0, a	;load scalar a
MOV	F1, F0	;copy a into F1 for SIMD MUL
MOV	F2, F0	;copy a into F2 for SIMD MUL
MOV	F3, F0	;copy a into F3 for SIMD MUL
DADDIU	R4,Rx,\#512	;last address to load

Loop:
L.4D

MUL.4D
L.4D

ADD.4D
S.4D

DADDIU
DADDIU
DSUBU
BNEZ
F4,0[Rx]
F4,F4,F0
F8,0[Ry]
F8,F8,F4
F8,0[Ry]
Rx,Rx,\#32
Ry,Ry,\#32
R20,R4,Rx
;compute bound
R20,Loop
;check if done

Summary of SIMD Operations (1)

- Integer arithmetic
- Addition and subtraction with saturation
- Fixed-point rounding modes for multiply and shift
- Sum of absolute differences
- Multiply-add, multiplication with reduction
- Min, max
- Floating-point arithmetic
- Packed floating-point operations
- Square root, reciprocal
- Exception masks
- Data communication
- Merge, insert, extract
- Pack, unpack (width conversion)
- Permute, shuffle

Example of SIMD Operation (1)

Pack (Int16->Int8)

Example of SIMD Operation (2)

Sum of Partial Products

SIMD Performance

Limitations

- Memory bandwidth
- Overhead of handling alignment and data width adjustments

A Closer Look at MMX/SSE

- Higher speedup for kernels with narrow data where 128b SSE instructions can be used
- Lower speedup for those with irregular or strided accesses

Roofline Performance Model

- Basic idea:
- Plot peak floating-point throughput as a function of arithmetic intensity
- Ties together floating-point performance and memory performance for a target machine
- Arithmetic intensity
- Floating-point operations per byte read

Examples (roof-line plots)

- Attainable GFLOPs/sec Min = (Peak Memory BW \times Arithmetic Intensity, Peak Floating Point Perf.)

Vector Architectures

- Basic idea:
- Read sets of data elements into "vector registers"
- Operate on those registers
- Disperse the results back into memory
- Registers are controlled by compiler
- Used to hide memory latency
- Leverage memory bandwidth

Vector Instructions

- Vector processors have high-level operations that work on linear arrays of numbers: "vectors"

Properties of Vector Architectures

- Single vector instruction implies lots of work (loop)
- Fewer instruction fetches
- Each result independent of previous result
- Compiler ensures no dependencies
- Multiple operations can be executed in parallel
- Simpler design, high clock rate
- Reduces branches and branch problems in pipelines
- Vector instructions access memory with known pattern
- Effective prefetching
- Amortize memory latency of over large number of elements
- Can exploit a high bandwidth memory system
- No (data) caches required!

VMIPS

- Example architecture: VMIPS
- Loosely based on Cray-1
- Vector registers
- Each register holds a 64-element, 64 bits/element vector
- Register file has 16 read ports and 8 write ports
- Vector functional units
- Fully pipelined
- Data and control hazards are detected
- Vector load-store unit
- Fully pipelined
- One word per clock cycle after initial latency
- Scalar registers
- 32 general-purpose registers
- 32 floating-point registers

VMIPS vector architecture

DAXPY in MIPS Instructions

Example: DAXPY (double precision $\mathrm{a}^{*} \mathrm{X}_{+} \mathrm{Y}$)

Loop:	L.D	F0,a	; load scalar a
	DADDIU	R4,Rx,\#512	; last address to load
	L.D	F2,0(Rx)	; load X[i]
	MUL.D	F2,F2,F0	; $\mathrm{ax} \times$ [${ }^{\text {] }}$
	L.D	F4,0(Ry)	; load Y[i]
	ADD.D	F4,F2,F2	; $\mathrm{ax} \times \mathrm{X}[\mathrm{i}]+\mathrm{Y}[\mathrm{i}]$
	S.D	F4,9(Ry)	; store into Y[i]
	DADDIU	Rx, Rx,\#8	; increment index to X
	DADDIU	Ry, Ry,\#8	; increment index to Y
	SUBBU	R20,R4,Rx	; compute bound
	BNEZ	R20,Loop	; check if done

- Requires almost 600 MIPS ops

VMIPS Instructions

- ADDVV.D: add two vectors
- ADDVS.D: add vector to a scalar
- LV/SV: vector load and vector store from address
- Example: DAXPY (double precision $\mathrm{a}^{*} \mathrm{X}+\mathrm{Y}$)

L.D	F0,a	; load scalar a
LV	V1,Rx	; load vector X
MULVS.D	V2,V1,F0	; vector-scalar multiply
LV	V3,Ry	; load vector Y
ADDVV	V4,V2,V3	; add
SV	Ry,V4	; store the result

- Requires 6 instructions

Vector Execution Time

- Execution time depends on three factors:
- Length of operand vectors
- Structural hazards
- Data dependencies
- VMIPS functional units consume one element per clock cycle
- Execution time is approximately the vector length
- Convoy
- Set of vector instructions that could potentially execute together

Chimes

- Sequences with read-after-write dependency hazards can be in the same convoy via chaining
- Chaining
- Allows a vector operation to start as soon as the individual elements of its vector source operand become available
- Chime
- Unit of time to execute one convey
- m conveys executes in m chimes
- For vector length of n, requires $m \times n$ clock cycles

Vector Processor Optimizations: Chaining

- Dependencies

```
vmul.vv V1,V2,V3
vadd.vv V4,V1,V5 # RAW hazard
```

- Chaining: Overlapping dependent vector operations
- Vector register (V1) is not as a single entity but as a group of individual registers
- Pipeline forwarding can work on individual vector elements
- Flexible chaining: allow vector to chain to any other active vector operation => more read/write ports

Chained

Example

LV	V1,Rx	;load vector X
MULVS.D	V2,V1,F0	;vector-scalar multiply
LV	V3,Ry	;load vector Y
ADDVV.D	V4,V2,V3	;add two vectors
SV	Ry,V4	;store the sum

Convoys:

1	LV	MULVS.D
2	LV	ADDVV.D
3	SV	

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 64 element vectors, requires $64 \times 3=192$ clock cycles

Challenges

- Start up time
- Latency of vector functional unit
- Assume the same as Cray-1
- Floating-point add => 6 clock cycles
- Floating-point multiply => 7 clock cycles
- Floating-point divide => 20 clock cycles
- Vector load => 12 clock cycles
- Optimizations:
- Multiple Lanes: > 1 element per clock cycle
- Vector Length Registers: Non-64 wide vectors
- Vector Mask Registers: IF statements in vector code
- Memory Banks: Memory system optimizations to support vector processors
- Stride: Multiple dimensional matrices
- Scatter-Gather: Sparse matrices
- Programming Vector Architectures: Program structures affecting performance

Multiple Lanes

- Element n of vector register A is "hardwired" to element n of vector register B
- Allows for multiple hardware lanes

Vector Processors: Chaining \& Multi-lane Example

- VL=16, 4 lanes, 2 FUs, 1 LSU, chaining -> 12 ops/cycle
- Just one new instruction issued per cycle!!!!

Vector Length Registers

- Vector length not known at compile time?
- Use Vector Length Register (VLR)
- Use strip mining for vectors over the maximum length:

Vector Mask Registers

- Consider:

$$
\begin{aligned}
& \text { for }(i=0 ; i<64 ; i=i+1) \\
& \text { if }(X[i]!=0) \\
& X[i]=X[i]-Y[i] ;
\end{aligned}
$$

- Use vector mask register to "disable" elements (if conversion):

```
LV
V1, Rx
;load vector X into V1
LV V2,Ry
;load vector Y
L.D FO,#O
;load FP zero into FO
SNEVS.D V1,F0
SUBVV.D V1,V1,V2
;subtract under vector mask
SV Rx,V1
;store the result in X
```

- GFLOPS rate decreases!

Memory Banks

- Memory system must be designed to support high bandwidth for vector loads and stores
- Spread accesses across multiple banks
- Control bank addresses independently
- Load or store non sequential words
- Support multiple vector processors sharing the same memory
- Example:
- 32 processors, each generating 4 loads and 2 stores/cycle
- Processor cycle time: 2.167 ns, SRAM cycle time: 15 ns
- How many memory banks needed?
- 32x6=192 accesses,
- 15/2.167 ≈ 7 processor cycles
- $\rightarrow 1344$!

Stride

- Consider:

$$
\begin{aligned}
& \text { for (i = 0; i < 100; i=i+1) } \\
& \text { for (j = 0; j < 100; j=j+1) \{ } \\
& \text { A[i][j] = 0.0; } \\
& \text { for (k = 0; } \mathrm{k} \text { < 100; } \mathrm{k}=\mathrm{k}+1 \text {) } \\
& \text { A[i][j] = A[i][j] + B[i][k] * D[k][j]; }
\end{aligned}
$$

\}

- Must vectorize multiplication of rows of B with columns of D
- Use non-unit stride
- Bank conflict (stall) occurs when the same bank is hit faster than bank busy time:
- \#banks / LCM(stride, \#banks) < bank busy time (in \# of cycles)
- Example:

8 memory banks with a bank busy time of 6 cycles and a total memory latency of 12 cycles. How long will it take to complete a 64 -element vector load with a stride of 1 ? With a stride of 32 ?

- Answer:
- Stride of 1 : number of banks is greater than the bank busy time, so it takes
- $12+64=76$ clock cycles $\rightarrow 1.2$ cycle per element
- Stride of 32: the worst case scenario happens when the stride value is a multiple of the number of banks, which this is! Every access to memory will collide with the previous one! Thus, the total time will be:
- $12+1+6$ * $63=391$ clock cycles, or 6.1 clock cycles per element!

Scatter-Gather

- Consider sparse vectors A \& C and vector indices K \& M, and A and C have the same number (n) of non-zeros:

$$
\begin{aligned}
& \text { for } \quad(i=0 ; i<n ; i=i+1) \\
& \quad A[K[i]]=A[K[i]]+C[M[i]] ;
\end{aligned}
$$

Ra, Rc, Rk and Rm the starting addresses of vectors

- Use index vector:

LV	Vk, Rk	;load K
LVI	$\mathrm{Va}, \mathrm{(Ra+Vk)}$;load $\mathrm{A}[\mathrm{K}[]]$
LV	Vm, Rm	;load M
LVI	$\mathrm{Vc}, \quad(\mathrm{Rc}+\mathrm{Vm})$;load C[M[]]
ADDVV.D	$\mathrm{Va}, \mathrm{Va}, \mathrm{Vc}$; add them
SVI	$(\mathrm{Ra}+\mathrm{Vk}), \mathrm{Va}$; store $\mathrm{A}[\mathrm{K}[]]$

Programming Vec. Architectures

- Compilers can provide feedback to programmers
- Programmers can provide hints to compiler

Benchmark name	Operations executed in vector mode, compiler-optimized	Operations executed in vector mode, with programmer aid	Speedup from hint optimization
BDNA	96.1%	97.2%	1.52
MG3D	95.1%	94.5%	1.00
FLO52	91.5%	88.7%	N/A
ARC3D	91.1%	92.0%	1.01
SPEC77	90.3%	90.4%	1.07
MDG	87.7%	94.2%	1.49
TRFD	69.8%	73.7%	1.67
DYFESM	68.8%	65.6%	N/A
ADM	42.9%	59.6%	3.60
OCEAN	42.8%	91.2%	3.92
TRACK	14.4%	54.6%	2.52
SPICE	11.5%	79.9%	4.06
QCD	4.2%	75.1%	2.15

How to Pick Max. Vector Length?

- Vector length => Keep all VFUs busy:
- Vector length $>=\frac{\text { (\# lanes) X (\# VFUs) }}{\text { \# Vector instr. issued/cycle }}$
- Notes:
- Single instruction issue is always the simplest
- Don't forget you have to issue some scalar instructions as well

How to Pick Max Vector Length?

- Longer good because:
- Lower instruction bandwidth
- If know max length of app. is < max vector length, no strip mining overhead
- Tiled access to memory reduce scalar processor memory bandwidth needs
- Better spatial locality for memory access
- Longer not much help because:
- Diminishing returns on overhead savings as keep doubling number of elements
- Need natural app. vector length to match physical register length, or no help
- Area for multi-ported register file

How to Pick \# of Vector Registers?

- More vector registers:
- Reduces vector register "spills" (save/restore)
- Aggressive scheduling of vector instructions: better compiling to take advantage of ILP
- Fewer
- Fewer bits in instruction format (usually 3 fields)
- 32 vector registers are usually enough

Context Switch Overhead?

- The vector register file holds a huge amount of architectural state
- Too expensive to save and restore all on each context switch
- Extra dirty bit per processor
- If vector registers not written, don't need to save on context switch
- Extra valid bit per vector register, cleared on process start
- Don't need to restore on context switch until needed
- Extra tip:
- Save/restore vector state only if the new context needs to issue vector instructions

Exception Handling: Arithmetic

- Arithmetic traps are hard
- Precise interrupts => large performance loss
- Multimedia applications don't care much about arithmetic traps anyway
- Alternative model
- Store exception information in vector flag registers
- A set flag bit indicates that the corresponding element operation caused an exception
- Software inserts trap barrier instructions from SW to check the flag bits as (if/when) needed
- IEEE floating point requires 5 flag registers (5 types of traps)

Exception Handling: Page Faults

- Page faults must be precise
- Instruction page faults not a problem
- Data page faults harder
- Option 1: Save/restore internal vector unit state
- Freeze pipeline, (dump all vector state), fix fault, (restore state and) continue vector pipeline
- Option 2: expand memory pipeline to check all addresses before send to memory
- Requires address and instruction buffers to avoid stalls during address checks
- On a page-fault on only needs to save state in those buffers
- Instructions that have cleared the buffer can be allowed to complete

Exception Handling: Interrupts

- Interrupts due to external sources
- I/O, timers etc
- Handled by the scalar core
- Should the vector unit be interrupted?
- Not immediately (no context switch)
- Only if it causes an exception or the interrupt handler needs to execute a vector instruction

Summary of Vector Architecture

- Optimizations:
- Multiple Lanes: > 1 element per clock cycle
- Vector Length Registers: Non-64 wide vectors
- Vector Mask Registers: IF statements in vector code
- Memory Banks: Memory system optimizations to support vector processors
- Stride: Multiple dimensional matrices
- Scatter-Gather: Sparse matrices
- Programming Vector Architectures: Program structures affecting performance

Example: Vector Multiplication

- Consider the following code, which multiplies two vectors that contain single-precision complex values:
- for (i=0; i<300; i++) \{
- c_re[i] = a_re[i] * b_re[i] - a_im[i] * b_im[i];
- c_im[i] = a_re[i] * b_im[i] + a_im[i] * b_re[i];
- Asumme that the processor runs at 700 MHz and has a maximum vector length of 64 .
- What is the arithmetic intensity of this kernel (i.e., the ratio of floating-point operations per byte of memory accessed)?
- Convert this loop into VMIPS assembly code using strip mining.
- Assuming chaining and a single memory pipeline, how many chimes are required?

Example: Vector Multiplication

		$1 i$	\$VL, 44	\# perform the first 44 ops
		$1{ }^{1}$	\$r1,0	\# initialize index
	1oop:	1 v	\$v1,a_re+\$r1	\# load a_re
A.	The code reads four	1 v	\$v3,b_re+\$r1	\# load b_re
	floats and writes two	mulvv.s	\$v5, \$v1, \$v3	\# a+re*b_re
	floats for every six	1 v	\$v2, a_im+\$r1	\# load a_im
	FLOPs, so the	1 v	\$v4, b_im+\$r1	\# load b_im
	arithmetic intensity =	mulvv.s	\$v6,\$v2, \$v4	\# a+im*b_im
	$6 / 6=1$.	subvv.s	\$v5,\$v5, \$v6	\# a+re*b-re - a+im*b_im
B.	Assume MVL $=64 \rightarrow$	sV	\$v5, c_re+\$r1	\# store c- re -
	$300 \bmod 64=44$	mulvv.s	\$v5,\$v1,\$v4	\# a+re*b_im
		mulvv.s	\$v6,\$v2, \$v3	\# a+im*b_re
		addvv.s	\$v5,\$v5, \$v6	\# a+re*b_im + a+im*b_re
		sv	\$v5, c_im+\$r1	\# store c_im
		bne	\$r1,0,else	\# check if first iteration
		addi	\$r1,\$r1, \#44	\# first iteration, increment by 44
		j 10op		\# guaranteed next iteration
	else:	addi	\$r1,\$r1,\#256	\# not first iteration, increment by 256
	skip:	blt	\$r1,1200,100p	\# next iteration?

Example: Vector Multiplication

Identify convoys:	$1 i$	\$VL, 44	\# perform the first 44 ops
	$1 i$	\$r1,0	\# initialize index
1. mulvv.s	\# a re * b re loop: 1v	\$v1,a_re+\$r1	\# load a_re
	\# a_re o_re lv	\$v3, b_re+\$r1	\# load b_re
	\# (assume already loaded)m̧ulvv.s	\$ $\mathrm{v}, \mathrm{\$} \mathrm{v} 1, \$ \mathrm{v} 3$	\# a+re*b_re
	$1 \mathrm{v}$	\$v2, $\mathrm{a}_{-} \mathrm{im+}$ \$r1	\# load a_im
	\# load a_iv	\$v4, b_im+\$r1	\# load b_im
2.lv mulvv.s	\# load b_im, a_im * b_im mulvv.s	\$v6,\$v2,\$v4	\# a+im*b_im
3. subvv.s SV	\# subtract and store c_re subvv.s	\$v5, \$v5, \$v6	\# a+re*b_re - a+im*b_im
4. mulvv.s	\# a re* b re, mulvv.s	\$v5, \$v1,\$v4	\# store carere
	\# a_re mulvv.s	\$v6,\$v2,\$v3	\# a+im*b_re
	\# load next a_re vector addvv.s	\$v5,\$v5,\$v6	\# a+re*b_-im + a+im*b_re
5. mulvv.s	\# a_im * b_re, sv	\$v5, c_im+\$r1	\# store c_im -
	\#a_im bne	\$r1,0,else	\# check if first iteration
	\# load next b_re vector addi	\$r1,\$r1,\#44	\# first iteration,
6. addvv.s Sv	\# add and store c_im j loop		increment by 44 \# guaranteed next iteration
	else: addi	\$r1,\$r1, \#256	\# not first iteration, increment by 256
6 chimes	skip: blt	\$r1,1200,10op	\# next iteration?

GPU: Graphical Processing Units

- Pixels in frame buffer (video memory?) are many but independent
- Graphics operations touch many pixels => need acceleration => graphics cards with basic pixel operations
- + memory bandwidth!
- Since they are already there, can we use them for other (general purpose) computation?
- Only incremental cost, as already there for graphics!
- Data parallel, SIMD?
- Programming model is "Single Instruction Multiple Thread" (SIMT)

GPU: Graphical Processing Units

- Basic idea:
- Heterogeneous execution model
- CPU is the host, GPU is the device
- Initially program in "assembly" (low-level)
- Develop a C-like programming language for GPU
- Compute Unified Device Architecture (CUDA)
- OpenCL for vendor-independent language
- Unify all forms of GPU parallelism as CUDA thread

Threads and Blocks

- A thread is associated with each data element
- CUDA threads, with thousands of which being utilized to various styles of parallelism: multithreading, SIMD, MIMD, ILP
- Threads are organized into blocks
- Thread Blocks: groups of up to 512 elements
- Multithreaded SIMD Processor: hardware that executes a whole thread block (32 elements executed per thread at a time)
- Blocks are organized into a grid
- Blocks are executed independently and in any order
- Different blocks cannot communicate directly but can coordinate using atomic memory operations in Global Memory
- GPU hardware handles thread management, not applications or OS
- A multiprocessor composed of multithreaded SIMD processors
- A Thread Block Scheduler

Grid, Threads, and Blocks

NVIDIA GPU Architecture

- Similarities to vector machines:
- Works well with data-level parallel problems
- Scatter-gather transfers
- Mask registers
- Large register files
- Differences:
- No scalar processor
- Uses multithreading to hide memory latency
- Has many functional units, as opposed to a few deeply pipelined units like a vector processor

Example

- Multiply two vectors of length 8192
- Code that works over all elements is the grid
- Thread blocks break this down into manageable sizes
- 512 elements/block, 16 SIMD threads/block $\rightarrow 32$ ele/thread
- SIMD instruction executes 32 elements at a time
- Thus grid size = 16 blocks
- Block is analogous to a strip-mined vector loop with vector length of 32
- Block is assigned to a multithreaded SIMD processor by the thread block scheduler
- Current-generation GPUs (Fermi) have 7-15 multithreaded SIMD processors

Fermi GTX 480 GPU Floor plan

6 GDDR5 ports, 64 bits wide, up to 6 GB size. Thread Block Scheduler shown on the left

Terminology

- Threads of SIMD instructions
- Each has its own PC
- Thread scheduler uses scoreboard to dispatch
- No data dependencies between threads!
- Keeps track of up to 48 threads of SIMD instructions
- Hides memory latency
- Thread block scheduler schedules blocks to SIMD processors
- Within each SIMD processor:
- 32 SIMD lanes
- Wide and shallow compared to vector processors

Scheduling of SIMD instructions

The scheduler selects a ready thread of SIMD instructions and issues an instruction synchronously to all the SIMD Lanes executing the SIMD thread. Since threads of SIMD instructions are independent, the scheduler may select a different SIMD thread each time.

Example

- NVIDIA GPU has 32,768 registers
- Divided into lanes
- Each SIMD thread is limited to 64 registers
- SIMD thread has up to:
- 64 vector registers of 32 32-bit elements
- 32 vector registers of 32 64-bit elements
- Fermi has 16 physical SIMD lanes, each containing 2048 registers

Multithreaded SIMD Processor

16 SIMD lanes: The SIMD Thread Scheduler has, for example, 48 independent threads of SIMD instructions that it schedules with a table of 48 PCs.

NVIDIA Instruction Set Arch.

- ISA is an abstraction of the hardware instruction set
. "Parallel Thread Execution (PTX)"
- Uses virtual registers
- Translation to machine code is performed in software
- Example: one CUDA thread, 8192 of these created!
shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 29)
add.s32 R8, R8, threadldx ; R8 = i = my CUDA thread ID
Id.global.f64 RD0, $[\mathrm{X}+\mathrm{R8}] \quad ; \mathrm{RD0}=\mathrm{X}[\mathrm{i}]$
Id.global.f64 RD2, $[\mathrm{Y}+\mathrm{R} 8] \quad ; \mathrm{RD} 2=\mathrm{Y}[i]$
mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)
add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])
st.global.f64 [Y+R8], RD0 $; \mathrm{Y}[i]=$ sum (X[i]*a $+\mathrm{Y}[i])$

Conditional Branching

- Like vector architectures, GPU branch hardware uses internal masks
- Also uses
- Branch synchronization stack
- Entries consist of masks for each SIMD lane
- I.e. which threads commit their results (all threads execute)
- Instruction markers to manage when a branch diverges into multiple execution paths
- Push on divergent branch
- ...and when paths converge
- Act as barriers
- Pops stack
- Per-thread-lane 1-bit predicate register, specified by programmer

EMe

$$
\begin{aligned}
& \text { if }(X[i] \text { ! }=0) \\
& \quad X[i]=X[i]-Y[i] ; \\
& \text { else } X[i]=Z[i] ;
\end{aligned}
$$

Id.global.f64	RD0, $[\mathrm{X}+\mathrm{R} 8]$
setp.neq.s32	$\mathrm{P} 1, \mathrm{RD0}, \# 0$
@!P1, bra	ELSE1, *Push

Id.global.f64 RD2, [Y+R8]
sub.f64 RD0, RD0, RD2
st.global.f64 [X+R8], RD0
@P1, bra ENDIF1, *Comp

ELSE1: Id.global.f64 RD0, $[Z+R 8] \quad ; R D 0=Z[i]$
st.global.f64 [X+R8], RD0 ; X[i] = RD0

ENDIF1: <next instruction>, *Pop ; pop to restore old mask

NVIDIA GPU Memory Structures

- Each SIMD Lane has private section of off-chip DRAM
- "Private memory", not shared by any other lanes
- Contains stack frame, spilling registers, and private variables
- Recent GPUs cache this in L1 and L2 caches
- Each multithreaded SIMD processor also has local memory that is on-chip
- Shared by SIMD lanes / threads within a block only
- The off-chip memory shared by SIMD processors is GPU Memory
- Host can read and write GPU memory

Grid 0

	* * *	

- - Grid 1 - Inter-Grid Synchronization - - -

GPU Memory structures. GPU Memory is shared by all Grids (vectorized loops), Local Memory is shared by all threads of SIMD instructions within a thread block (body of a vectorized loop), and Private Memory is private to a single CUDA Thread.

Fermi Architecture Innovations

- Each SIMD processor has
- Two SIMD thread schedulers, two instruction dispatch units
- 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store units, 4 special function units
- Thus, two threads of SIMD instructions are scheduled every two clock cycles
- Fast double precision: gen- $78 \rightarrow 515$ GFLOPs for DAXPY
- Caches for GPU memory: I/D L1/SIMD proc and shared L2
- 64-bit addressing and unified address space: C/C++ ptrs
- Error correcting codes: dependability for long-running apps
- Faster context switching: hardware support, 10X faster
- Faster atomic instructions: 5-20X faster than ealier

Block Diagram of Fermi's Dual SIMD Thread Scheduler Compare this design to the single SIMD Thread Design

Fermi Multithreaded SIMD Proc.

Fermi streaming multiprocessor (SM)

Loop-Level Parallelism

- Focuses on determining whether data accesses in later iterations are dependent on data values produced in earlier iterations
- Loop-carried dependence
- Example 1:
for $(i=999 ; i>=0 ; i=i-1)$

$$
x[i]=x[i]+s ;
$$

- No loop-carried dependence

Loop-Level Parallelism

- Example 2:

$$
\begin{aligned}
& \text { for (i=0; i<100; i=i+1) \{ } \\
& A[i+1]=A[i]+C[i] ; /^{*} S 1 \text { */ } \\
& B[i+1]=B[i]+A[i+1] ; /^{*} \text { S2 */ }
\end{aligned}
$$

\}

- S1 and S2 use values computed by S1 in previous iteration
- S2 uses value computed by S1 in same iteration

Loop-Level Parallelism

- Example 3:
for ($\mathrm{i}=0$; $i<100 ; i=i+1$) $\{$

$$
\begin{aligned}
& \mathrm{A}[\mathrm{i}]=\mathrm{A}[\mathrm{i}]+\mathrm{B}[\mathrm{i}] ; /^{*} \mathrm{~S} 1 * * \\
& \mathrm{~B}[\mathrm{i}+1]=\mathrm{C}[\mathrm{i}]+\mathrm{D}[\mathrm{i}] ; \text { / }^{*} \mathrm{~S} 2 * /
\end{aligned}
$$

\}

- S1 uses value computed by S2 in previous iteration but dependence is not circular so loop is parallel
- Transform to:

$$
\begin{aligned}
& \mathrm{A}[0]=\mathrm{A}[0]+\mathrm{B}[0] ; \\
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<99 ; \mathrm{i}=\mathrm{i}+1)\{ \\
& \quad \mathrm{B}[\mathrm{i}+1]=\mathrm{C}[\mathrm{i}]+\mathrm{D}[\mathrm{i}] ; \\
& \mathrm{A}[\mathrm{i}+1]=\mathrm{A}[\mathrm{i}+1]+\mathrm{B}[\mathrm{i}+1] ;
\end{aligned}
$$

\}
$\mathrm{B}[100]=\mathrm{C}[99]+\mathrm{D}[99]$;

Loop-Level Parallelism

- Example 4:

$$
\text { for } \begin{aligned}
&(i=0 ; i<100 ; i=i+1) \\
& A[i]= B[i]+C[i] ; \\
& D[i]=A[i] * E[i] ;
\end{aligned}
$$

\}

- No loop-carried dependence
- Example 5:

$$
\begin{aligned}
& \text { for }(i=1 ; i; 100 ; i=i+1)\{ \\
& Y[i]=Y[i-1]+Y[i] ;
\end{aligned}
$$

\}

- Loop-carried dependence in the form of recurrence

Finding dependencies

- Assume that a 1-D array index i is affine:
- $a \times i+b$ (with constants a and b)
- An index in an n - D array index is affine if it is affine in each dimension
- Assume:
- Store to $a \times i+b$, then
- Load from cxi+d
- iruns from m to n
- Dependence exists if:
- Given j, k such that $m \leq j \leq n, m \leq k \leq n$
- Store to $a \times j+b$, load from $a \times k+d$, and $a \times j+b=c \times k+d$

Finding dependencies

- Generally cannot determine at compile time
- Test for absence of a dependence:
- GCD test:
- If a dependency exists, $\operatorname{GCD}(c, a)$ must evenly divide ($d-b$)
- Example:

$$
\begin{aligned}
& \text { for }(i=0 ; i<100 ; i=i+1)\{ \\
& \quad X\left[2^{*} i+3\right]=X\left[2^{*} i\right] \text { * } 5.0 ;
\end{aligned}
$$

\}

- Answer: $a=2, b=3, c=2, d=0 \rightarrow G C D(c, a)=2, d-$ $\mathrm{b}=-3 \rightarrow$ no dependence possible.

Finding dependencies

- Example 2 :

$$
\begin{aligned}
& \text { for }(i=0 ; i<100 ; i=i+1) ~\{ \\
& Y[i]=X[i] / c ; /^{*} S 1^{* /} \\
& X[i]=X[i]+c ; /^{*} S 2 * / \\
& Z[i]=Y[i]+c ; /^{*} S 3^{* /} \\
& Y[i]=c-Y[i] ; /^{*} S 4^{* /}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<100 ; \mathrm{i}=\mathrm{i}+1 \text { \{ } \\
& \mathrm{t}[\mathrm{i}]=\mathrm{X}[\mathrm{i}] / \mathrm{c} ; \\
& \mathrm{X} 1[\mathrm{i}]=\mathrm{X}[\mathrm{i}]+\mathrm{c} ; \\
& \mathrm{Z}[\mathrm{i}]=\mathrm{T}[\mathrm{i}]+\mathrm{c} ; \\
& \mathrm{Y}[\mathrm{i}]=\mathrm{c}-\mathrm{T}[\mathrm{i}] ;
\end{aligned}
$$

\}

- Watch for antidependencies and output dependencies:
- RAW: S1 \rightarrow S3, S1 \rightarrow S4 on Y[i], not loop-carried
- WAR: $\mathrm{S} 1 \rightarrow \mathrm{~S} 2$ on $\mathrm{X}[i]$; $\mathrm{S} 3 \rightarrow \mathrm{~S} 4$ on $\mathrm{Y}[i]$
- WAW: S1 \rightarrow S4 on Y[i]

Reductions

- Reduction Operation:
for ($\mathrm{i}=9999$; $\mathrm{i}>=0$; $\mathrm{i}=\mathrm{i}-1$)

$$
\text { sum = sum }+x[i] \text { * } y[i] ;
$$

- Transform to...
for ($\mathrm{i}=9999$; $i>=0 ; i=i-1$)
sum [i] $=x[i]$ * y[i];
for ($\mathrm{i}=9999$; $\mathrm{i}>=0$; $\mathrm{i}=\mathrm{i}-1$)
finalsum = finalsum + sum[i];
- Do on p processors:
for ($i=999$; $i>=0$; $i=i-1$)
finalsum $[\mathrm{p}]=$ finalsum $[\mathrm{p}]+$ sum $\left[i+1000^{*} \mathrm{p}\right]$;
- Note: assumes associativity!

