
1

Προηγμένη Αρχιτεκτονική Υπολογιστών

Στατικός Παραλληλισμός:

SIMD – Vector – GPU

Νεκτάριος Κοζύρης & Διονύσης Πνευματικάτος

{nkoziris,pnevmati}@cslab.ece.ntua.gr

8ο εξάμηνο ΣΗΜΜΥ ⎯ Ακαδημαϊκό Έτος:

2019-20

http://www.cslab.ece.ntua.gr/courses/advcomparch/

2

Flynn’s Taxonomy

 Single Instruction stream, Single Data stream: SISD

 Single Instruction/Multiple Data streams: SIMD
 Vector architectures

 Multimedia extensions

 Graphics processor units

 Multiple Instruction/Single Data stream: MISD
 No commercial implementation

 Multiple Instruction/Multiple Data streams: MIMD
 Tightly-coupled MIMD

 Loosely-coupled MIMD

3

Introduction

 SIMD architectures can exploit significant data-
level parallelism for:
 matrix-oriented scientific computing

 media-oriented image and sound processors

 SIMD is more energy efficient than MIMD
 Only needs to fetch one instruction per data operation

 Makes SIMD attractive for personal mobile devices

 SIMD allows programmer to continue to think
sequentially

4

SIMD Parallelism

 Vector architectures

 SIMD extensions

 Graphics Processor Units (GPUs)

 For x86 processors:
 Expect two additional cores per chip per year

 SIMD width to double every four years

 Potential speedup from SIMD to be twice that from
MIMD!

5

Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD:

Assumes that two cores per chip for MIMD are added every two years and the number of

operations for SIMD will double every four years.

6

 SIMD = Single Instruction, Multiple Data

 (a) sub-word parallelism (RBG pixel = 3 bytes)

 Assume wide, multi-item registers

 add rd, rs, rt produces multiple results!

 Fewer instructions, fewer branches!

 Hard for compiler to use, hand code libraries mostly!

 Intel MMX, SSD{1-4}, AVX,…

 (b) wide registers: Vector Processing

 Other options:

 Typical pipelines: SISD

 Parallel programs: MIMD

SIMD

7

Blue/Green Screen Effects

8

 Array X (blue screen), Y (background), 16-bit pixels

 Result in X

 X86 loop:

CMP X[i], BLUE ;Check if blue

JNE next_pixel ;If not, skip ahead

MOV X[i], Y[i] ;If blue, use second image

+ loop control

MMX example: blue screen image merging

9

MOV MM1, X[i] ;Make a copy of X[i]

;Check X, make mask

PCMPEQW MM1, BLUE

;clear non-blue Y pixels

PAND Y[i], MM1

;Zero out blue pixels in X

PANDN MM1, X[i]

;Combine two images

POR MM1, Y[i]

 Process 4 pixels per instruction

 MMX = 4 results per loop iterations (5 instructions)

 Eliminate test branch!

 Speed: >= 2.5x

MMX example: blue screen image merging

10

SIMD Extensions (short vectors)

 Media applications operate on data types

narrower than the native word size

 Example: disconnect carry chains to “partition” adder

 Limitations, compared to vector instructions:

 Number of data operands encoded into op code

 No sophisticated addressing modes (strided, scatter-

gather)

 No mask registers

11

SIMD Implementations
 Implementations:

 Intel MMX (1996)

 Eight 8-bit integer ops or four 16-bit integer ops

 Streaming SIMD Extensions (SSE) (1999)

 Eight 16-bit integer ops

 Four 32-bit integer/fp ops or two 64-bit integer/fp ops

 Advanced Vector Extensions (2010)

 Four 64-bit integer/fp ops

 Operands must be consecutive and aligned memory locations

 Generally designed to accelerate carefully written libraries rather than

for compilers

 Advantages over vector architecture:

 Cost little to add to the standard ALU and easy to implement

 Require little extra state easy for context-switch

 Require little extra memory bandwidth

 No virtual memory problem of cross-page access and page-fault

12

Example SIMD Code
 Example DXPY:

L.D F0,a ;load scalar a

MOV F1, F0 ;copy a into F1 for SIMD MUL

MOV F2, F0 ;copy a into F2 for SIMD MUL

MOV F3, F0 ;copy a into F3 for SIMD MUL

DADDIU R4,Rx,#512 ;last address to load

Loop:

L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3]

MUL.4D F4,F4,F0 ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3]

L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3]

ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3]

S.4D F8,0[Ry] ;store into Y[i], Y[i+1], Y[i+2], Y[i+3]

DADDIU Rx,Rx,#32 ;increment index to X

DADDIU Ry,Ry,#32 ;increment index to Y

DSUBU R20,R4,Rx ;compute bound

BNEZ R20,Loop ;check if done

13

Summary of SIMD Operations (1)
 Integer arithmetic

 Addition and subtraction with saturation

 Fixed-point rounding modes for multiply and shift

 Sum of absolute differences

 Multiply-add, multiplication with reduction

 Min, max

 Floating-point arithmetic
 Packed floating-point operations

 Square root, reciprocal

 Exception masks

 Data communication
 Merge, insert, extract

 Pack, unpack (width conversion)

 Permute, shuffle

14

Example of SIMD Operation (1)

Pack (Int16->Int8)

15

Example of SIMD Operation (2)

* * * *

+ +

Sum of Partial Products

16

SIMD Performance

0

2

4

6

8

Athlon Alpha

21264

Pentium III PowerPC

G4

UltraSparc

IIi

S
p

e
e

d
u

p
 o

v
e

r
B

a
s

e

A
rc

h
it

e
c
tu

re
 f

o
r

B
e

rk
e

le
y

M
e

d
ia

 B
e

n
c
h

m
a
rk

s

Arithmetic Mean Geometic Mean

Limitations
• Memory bandwidth
• Overhead of handling alignment and data width adjustments

17

A Closer Look at MMX/SSE

 Higher speedup for kernels with narrow data where 128b SSE

instructions can be used

 Lower speedup for those with irregular or strided accesses

18

Roofline Performance Model
 Basic idea:

 Plot peak floating-point throughput as a function of

arithmetic intensity

 Ties together floating-point performance and memory

performance for a target machine

 Arithmetic intensity

 Floating-point operations per byte read

19

Examples (roof-line plots)

 Attainable GFLOPs/sec Min = (Peak Memory BW ×

Arithmetic Intensity, Peak Floating Point Perf.)

20

Vector Architectures

 Basic idea:

 Read sets of data elements into “vector

registers”

 Operate on those registers

 Disperse the results back into memory

 Registers are controlled by compiler

 Used to hide memory latency

 Leverage memory bandwidth

21

Vector Instructions
 Vector processors have high-level operations that

work on linear arrays of numbers: "vectors"

+

r1 r2

r3

add r3, r1, r2

SCALAR

(1 operation)

v1 v2

v3

+

vector

length

vadd.vv v3, v1, v2

VECTOR

(N operations)

22

Properties of Vector Architectures

 Single vector instruction implies lots of work (loop)
 Fewer instruction fetches

 Each result independent of previous result
 Compiler ensures no dependencies

 Multiple operations can be executed in parallel

 Simpler design, high clock rate

 Reduces branches and branch problems in

pipelines

 Vector instructions access memory with known

pattern
 Effective prefetching

 Amortize memory latency of over large number of

elements

 Can exploit a high bandwidth memory system

 No (data) caches required!

23

VMIPS

 Example architecture: VMIPS
 Loosely based on Cray-1

 Vector registers
 Each register holds a 64-element, 64 bits/element vector

 Register file has 16 read ports and 8 write ports

 Vector functional units
 Fully pipelined

 Data and control hazards are detected

 Vector load-store unit
 Fully pipelined

 One word per clock cycle after initial latency

 Scalar registers
 32 general-purpose registers

 32 floating-point registers

24

VMIPS vector architecture

25

DAXPY in MIPS Instructions
Example: DAXPY (double precision a*X+Y)

L.D F0,a ; load scalar a

DADDIU R4,Rx,#512 ; last address to load

Loop: L.D F2,0(Rx) ; load X[i]

MUL.D F2,F2,F0 ; a x X[i]

L.D F4,0(Ry) ; load Y[i]

ADD.D F4,F2,F2 ; a x X[i] + Y[i]

S.D F4,9(Ry) ; store into Y[i]

DADDIU Rx,Rx,#8 ; increment index to X

DADDIU Ry,Ry,#8 ; increment index to Y

SUBBU R20,R4,Rx ; compute bound

BNEZ R20,Loop ; check if done

 Requires almost 600 MIPS ops

26

VMIPS Instructions

 ADDVV.D: add two vectors

 ADDVS.D: add vector to a scalar

 LV/SV: vector load and vector store from address

 Example: DAXPY (double precision a*X+Y)

L.D F0,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2,V1,F0 ; vector-scalar multiply

LV V3,Ry ; load vector Y

ADDVV V4,V2,V3 ; add

SV Ry,V4 ; store the result

 Requires 6 instructions

27

Vector Execution Time

 Execution time depends on three factors:

 Length of operand vectors

 Structural hazards

 Data dependencies

 VMIPS functional units consume one element
per clock cycle

 Execution time is approximately the vector
length

 Convoy

 Set of vector instructions that could potentially
execute together

28

Chimes

 Sequences with read-after-write dependency
hazards can be in the same convoy via
chaining

 Chaining

 Allows a vector operation to start as soon as
the individual elements of its vector source
operand become available

 Chime

 Unit of time to execute one convey

 m conveys executes in m chimes

 For vector length of n, requires m x n clock
cycles

29

 Dependencies
vmul.vv V1,V2,V3

vadd.vv V4,V1,V5 # RAW hazard

 Chaining: Overlapping dependent vector

operations

 Vector register (V1) is not as a single entity but as a

group of individual registers

 Pipeline forwarding can work on individual vector

elements

 Flexible chaining: allow vector to chain to any other

active vector operation => more read/write ports

Vector Processor Optimizations: Chaining

vmul vadd
Unchained

vmul

vadd

Chained

30

Example

LV V1,Rx ;load vector X

MULVS.D V2,V1,F0 ;vector-scalar multiply

LV V3,Ry ;load vector Y

ADDVV.D V4,V2,V3 ;add two vectors

SV Ry,V4 ;store the sum

Convoys:

1 LV MULVS.D

2 LV ADDVV.D

3 SV

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5

For 64 element vectors, requires 64 x 3 = 192 clock cycles

31

Challenges
 Start up time

 Latency of vector functional unit

 Assume the same as Cray-1
 Floating-point add => 6 clock cycles

 Floating-point multiply => 7 clock cycles

 Floating-point divide => 20 clock cycles

 Vector load => 12 clock cycles

 Optimizations:
 Multiple Lanes: > 1 element per clock cycle

 Vector Length Registers: Non-64 wide vectors

 Vector Mask Registers: IF statements in vector code

 Memory Banks: Memory system optimizations to support

vector processors

 Stride: Multiple dimensional matrices

 Scatter-Gather: Sparse matrices

 Programming Vector Architectures: Program structures

affecting performance

32

Multiple Lanes
 Element n of vector register A is “hardwired” to

element n of vector register B

 Allows for multiple hardware lanes

33

 VL=16, 4 lanes, 2 FUs, 1 LSU, chaining -> 12

ops/cycle

 Just one new instruction issued per cycle!!!!

Vector Processors: Chaining & Multi-lane Example

Instr. Issue:

vld

vmul.vv

vadd.vv

addu

vld

vmul.vv

vadd.vv

addu

LSU FU0 FU1Scalar

Time

Element Operations:

34

Vector Length Registers
 Vector length not known at compile time?

 Use Vector Length Register (VLR)

 Use strip mining for vectors over the maximum length:
low = 0;

VL = (n % MVL); /*find odd-size piece using modulo op % */

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

for (i = low; i < (low+VL); i=i+1) /*runs for length

VL*/

Y[i] = a * X[i] + Y[i] ; /*main operation*/

low = low + VL; /*start of next vector*/

VL = MVL; /*reset the length to maximum vector length*/

}

35

Vector Mask Registers

 Consider:
for (i = 0; i < 64; i=i+1)

if (X[i] != 0)

X[i] = X[i] – Y[i];

 Use vector mask register to “disable” elements (if

conversion):
LV V1,Rx ;load vector X into V1

LV V2,Ry ;load vector Y

L.D F0,#0 ;load FP zero into F0

SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0

SUBVV.D V1,V1,V2 ;subtract under vector mask

SV Rx,V1 ;store the result in X

 GFLOPS rate decreases!

36

Memory Banks
 Memory system must be designed to support high

bandwidth for vector loads and stores

 Spread accesses across multiple banks
 Control bank addresses independently

 Load or store non sequential words

 Support multiple vector processors sharing the same

memory

 Example:
 32 processors, each generating 4 loads and 2 stores/cycle

 Processor cycle time: 2.167 ns, SRAM cycle time: 15 ns

 How many memory banks needed?
 32x6=192 accesses,

 15/2.167≈7 processor cycles

 1344!

37

Stride
 Consider:

for (i = 0; i < 100; i=i+1)

for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;

for (k = 0; k < 100; k=k+1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];

}

 Must vectorize multiplication of rows of B with

columns of D

 Use non-unit stride

 Bank conflict (stall) occurs when the same bank is

hit faster than bank busy time:
 #banks / LCM(stride, #banks) < bank busy time (in # of

cycles)

38

Stride
 Example:

8 memory banks with a bank busy time of 6 cycles and a

total memory latency of 12 cycles. How long will it take to

complete a 64-element vector load with a stride of 1? With a

stride of 32?

 Answer:

 Stride of 1: number of banks is greater than the bank busy time, so it

takes

 12+64 = 76 clock cycles 1.2 cycle per element

 Stride of 32: the worst case scenario happens when the stride value

is a multiple of the number of banks, which this is! Every access to

memory will collide with the previous one! Thus, the total time will

be:

 12 + 1 + 6 * 63 = 391 clock cycles, or 6.1 clock cycles per

element!

39

Scatter-Gather

 Consider sparse vectors A & C and vector indices K & M,

and A and C have the same number (n) of non-zeros:

for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];

Ra, Rc, Rk and Rm the starting addresses of vectors

 Use index vector:

LV Vk, Rk ;load K

LVI Va, (Ra+Vk) ;load A[K[]]

LV Vm, Rm ;load M

LVI Vc, (Rc+Vm) ;load C[M[]]

ADDVV.D Va, Va, Vc ;add them

SVI (Ra+Vk), Va ;store A[K[]]

40

Programming Vec. Architectures
 Compilers can provide feedback to programmers

 Programmers can provide hints to compiler

41

How to Pick Max. Vector Length?

 Vector length => Keep all VFUs busy:

 Vector length >=

 Notes:

 Single instruction issue is always the simplest

 Don’t forget you have to issue some scalar

instructions as well

(# lanes) X (# VFUs)

Vector instr. issued/cycle

42

How to Pick Max Vector Length?
 Longer good because:

 Lower instruction bandwidth

 If know max length of app. is < max vector length, no

strip mining overhead

 Tiled access to memory reduce scalar processor

memory bandwidth needs

 Better spatial locality for memory access

 Longer not much help because:

 Diminishing returns on overhead savings as keep

doubling number of elements

 Need natural app. vector length to match physical

register length, or no help

 Area for multi-ported register file

43

How to Pick # of Vector Registers?

 More vector registers:

 Reduces vector register “spills” (save/restore)

 Aggressive scheduling of vector instructions: better

compiling to take advantage of ILP

 Fewer

 Fewer bits in instruction format (usually 3 fields)

 32 vector registers are usually enough

44

Context Switch Overhead?
 The vector register file holds a huge amount of

architectural state
 Too expensive to save and restore all on each context

switch

 Extra dirty bit per processor
 If vector registers not written, don’t need to save on

context switch

 Extra valid bit per vector register, cleared on

process start
 Don’t need to restore on context switch until needed

 Extra tip:
 Save/restore vector state only if the new context needs

to issue vector instructions

45

Exception Handling: Arithmetic

 Arithmetic traps are hard

 Precise interrupts => large performance loss

 Multimedia applications don’t care much about

arithmetic traps anyway

 Alternative model

 Store exception information in vector flag registers

 A set flag bit indicates that the corresponding element

operation caused an exception

 Software inserts trap barrier instructions from SW to

check the flag bits as (if/when) needed

 IEEE floating point requires 5 flag registers (5 types of

traps)

46

Exception Handling: Page Faults
 Page faults must be precise

 Instruction page faults not a problem

 Data page faults harder

 Option 1: Save/restore internal vector unit state

 Freeze pipeline, (dump all vector state), fix fault, (restore

state and) continue vector pipeline

 Option 2: expand memory pipeline to check all

addresses before send to memory

 Requires address and instruction buffers to avoid stalls

during address checks

 On a page-fault on only needs to save state in those

buffers

 Instructions that have cleared the buffer can be allowed

to complete

47

Exception Handling: Interrupts

 Interrupts due to external sources

 I/O, timers etc

 Handled by the scalar core

 Should the vector unit be interrupted?

 Not immediately (no context switch)

 Only if it causes an exception or the interrupt handler

needs to execute a vector instruction

48

Summary of Vector Architecture

 Optimizations:

 Multiple Lanes: > 1 element per clock cycle

 Vector Length Registers: Non-64 wide vectors

 Vector Mask Registers: IF statements in vector code

 Memory Banks: Memory system optimizations to

support vector processors

 Stride: Multiple dimensional matrices

 Scatter-Gather: Sparse matrices

 Programming Vector Architectures: Program

structures affecting performance

49

Example: Vector Multiplication
 Consider the following code, which multiplies two

vectors that contain single-precision complex

values:
 for (i=0; i<300; i++) {

 c_re[i] = a_re[i] * b_re[i] – a_im[i] * b_im[i];

 c_im[i] = a_re[i] * b_im[i] + a_im[i] * b_re[i];

 Asumme that the processor runs at 700 MHz

and has a maximum vector length of 64.
 What is the arithmetic intensity of this kernel (i.e., the

ratio of floating-point operations per byte of memory

accessed)?

 Convert this loop into VMIPS assembly code using strip

mining.

 Assuming chaining and a single memory pipeline, how

many chimes are required?

50

Example: Vector Multiplication

A. The code reads four

floats and writes two

floats for every six

FLOPs, so the

arithmetic intensity =

6/6 = 1.

B. Assume MVL = 64

300 mod 64 = 44

51

Example: Vector Multiplication

C. Identify convoys:

1. mulvv.s lv # a_re * b_re

(assume already loaded),

load a_im

2. lv mulvv.s # load b_im, a_im * b_im

3. subvv.s sv # subtract and store c_re

4. mulvv.s lv # a_re * b_re,

load next a_re vector

5. mulvv.s lv # a_im * b_re,

load next b_re vector

6. addvv.s sv # add and store c_im

6 chimes

52

GPU: Graphical Processing Units

 Pixels in frame buffer (video memory?) are many

but independent

 Graphics operations touch many pixels => need

acceleration => graphics cards with basic pixel

operations

 + memory bandwidth!

 Since they are already there, can we use them

for other (general purpose) computation?

 Only incremental cost, as already there for graphics!

 Data parallel, SIMD?

 Programming model is “Single Instruction Multiple

Thread” (SIMT)

53

GPU: Graphical Processing Units
 Basic idea:

 Heterogeneous execution model

 CPU is the host, GPU is the device

 Initially program in “assembly” (low-level)

 Develop a C-like programming language for GPU

 Compute Unified Device Architecture (CUDA)

 OpenCL for vendor-independent language

 Unify all forms of GPU parallelism as CUDA thread

54

Threads and Blocks
 A thread is associated with each data element

 CUDA threads, with thousands of which being utilized to various styles

of parallelism: multithreading, SIMD, MIMD, ILP

 Threads are organized into blocks
 Thread Blocks: groups of up to 512 elements

 Multithreaded SIMD Processor: hardware that executes a whole thread

block (32 elements executed per thread at a time)

 Blocks are organized into a grid
 Blocks are executed independently and in any order

 Different blocks cannot communicate directly but can coordinate using

atomic memory operations in Global Memory

 GPU hardware handles thread management, not

applications or OS
 A multiprocessor composed of multithreaded SIMD processors

 A Thread Block Scheduler

55

Grid, Threads, and Blocks

56

NVIDIA GPU Architecture

 Similarities to vector machines:

 Works well with data-level parallel problems

 Scatter-gather transfers

 Mask registers

 Large register files

 Differences:

 No scalar processor

 Uses multithreading to hide memory latency

 Has many functional units, as opposed to a few

deeply pipelined units like a vector processor

57

Example

 Multiply two vectors of length 8192

 Code that works over all elements is the grid

 Thread blocks break this down into manageable sizes

 512 elements/block, 16 SIMD threads/block 32 ele/thread

 SIMD instruction executes 32 elements at a time

 Thus grid size = 16 blocks

 Block is analogous to a strip-mined vector loop with

vector length of 32

 Block is assigned to a multithreaded SIMD processor

by the thread block scheduler

 Current-generation GPUs (Fermi) have 7-15

multithreaded SIMD processors

58

6 GDDR5 ports, 64 bits wide, up to 6 GB size. Thread Block Scheduler shown on the left

Fermi GTX 480 GPU Floor plan

59

Terminology

 Threads of SIMD instructions

 Each has its own PC

 Thread scheduler uses scoreboard to dispatch

 No data dependencies between threads!

 Keeps track of up to 48 threads of SIMD instructions

 Hides memory latency

 Thread block scheduler schedules blocks to

SIMD processors

 Within each SIMD processor:

 32 SIMD lanes

 Wide and shallow compared to vector processors

60

The scheduler selects a ready thread of SIMD instructions and issues an instruction

synchronously to all the SIMD Lanes executing the SIMD thread. Since threads of SIMD

instructions are independent, the scheduler may select a different SIMD thread each time.

Scheduling of SIMD instructions

61

Example

 NVIDIA GPU has 32,768 registers

 Divided into lanes

 Each SIMD thread is limited to 64 registers

 SIMD thread has up to:

 64 vector registers of 32 32-bit elements

 32 vector registers of 32 64-bit elements

 Fermi has 16 physical SIMD lanes, each containing

2048 registers

62

16 SIMD lanes: The SIMD Thread Scheduler has, for example, 48 independent

threads of SIMD instructions that it schedules with a table of 48 PCs.

Multithreaded SIMD Processor

63

NVIDIA Instruction Set Arch.

 ISA is an abstraction of the hardware instruction

set

 “Parallel Thread Execution (PTX)”

 Uses virtual registers

 Translation to machine code is performed in software

 Example: one CUDA thread, 8192 of these created!
shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 29)

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)

add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

64

Conditional Branching

 Like vector architectures, GPU branch hardware uses

internal masks

 Also uses

 Branch synchronization stack

 Entries consist of masks for each SIMD lane

 I.e. which threads commit their results (all threads execute)

 Instruction markers to manage when a branch diverges into

multiple execution paths

 Push on divergent branch

 …and when paths converge

 Act as barriers

 Pops stack

 Per-thread-lane 1-bit predicate register, specified by

programmer

65

Example

if (X[i] != 0)

X[i] = X[i] – Y[i];

else X[i] = Z[i];

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

setp.neq.s32 P1, RD0, #0 ; P1 is predicate register 1

@!P1, bra ELSE1, *Push ; Push old mask, set new mask bits

; if P1 false, go to ELSE1

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

sub.f64 RD0, RD0, RD2 ; Difference in RD0

st.global.f64 [X+R8], RD0 ; X[i] = RD0

@P1, bra ENDIF1, *Comp ; complement mask bits

; if P1 true, go to ENDIF1

ELSE1: ld.global.f64 RD0, [Z+R8] ; RD0 = Z[i]

st.global.f64 [X+R8], RD0 ; X[i] = RD0

ENDIF1: <next instruction>, *Pop ; pop to restore old mask

66

NVIDIA GPU Memory Structures

 Each SIMD Lane has private section of off-chip DRAM

 “Private memory”, not shared by any other lanes

 Contains stack frame, spilling registers, and private

variables

 Recent GPUs cache this in L1 and L2 caches

 Each multithreaded SIMD processor also has

local memory that is on-chip

 Shared by SIMD lanes / threads within a block only

 The off-chip memory shared by SIMD

processors is GPU Memory

 Host can read and write GPU memory

67

GPU Memory structures. GPU Memory is shared by all Grids (vectorized loops), Local

Memory is shared by all threads of SIMD instructions within a thread block (body of a

vectorized loop), and Private Memory is private to a single CUDA Thread.

68

Fermi Architecture Innovations

 Each SIMD processor has

 Two SIMD thread schedulers, two instruction dispatch units

 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store

units, 4 special function units

 Thus, two threads of SIMD instructions are scheduled every two

clock cycles

 Fast double precision: gen- 78 515 GFLOPs for DAXPY

 Caches for GPU memory: I/D L1/SIMD proc and shared L2

 64-bit addressing and unified address space: C/C++ ptrs

 Error correcting codes: dependability for long-running apps

 Faster context switching: hardware support, 10X faster

 Faster atomic instructions: 5-20X faster than ealier

69

Block Diagram of Fermi’s Dual SIMD Thread Scheduler

Compare this design to the single SIMD Thread Design

70

Fermi Multithreaded SIMD Proc.

71

Loop-Level Parallelism

 Focuses on determining whether data accesses in later

iterations are dependent on data values produced in

earlier iterations

 Loop-carried dependence

 Example 1:

for (i=999; i>=0; i=i-1)

x[i] = x[i] + s;

 No loop-carried dependence

72

Loop-Level Parallelism

 Example 2:
for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

 S1 and S2 use values computed by S1 in

previous iteration

 S2 uses value computed by S1 in same iteration

73

Loop-Level Parallelism

 Example 3:
for (i=0; i<100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

 S1 uses value computed by S2 in previous iteration but dependence
is not circular so loop is parallel

 Transform to:

A[0] = A[0] + B[0];

for (i=0; i<99; i=i+1) {

B[i+1] = C[i] + D[i];

A[i+1] = A[i+1] + B[i+1];

}

B[100] = C[99] + D[99];

74

Loop-Level Parallelism

 Example 4:

for (i=0;i<100;i=i+1) {

A[i] = B[i] + C[i];

D[i] = A[i] * E[i];

}

 No loop-carried dependence

 Example 5:

for (i=1;i<100;i=i+1) {

Y[i] = Y[i-1] + Y[i];

}

 Loop-carried dependence in the form of recurrence

75

Finding dependencies

 Assume that a 1-D array index i is affine:

 a x i + b (with constants a and b)

 An index in an n-D array index is affine if it is

affine in each dimension

 Assume:

 Store to a x i + b, then

 Load from c x i + d

 i runs from m to n

 Dependence exists if:

 Given j, k such that m ≤ j ≤ n, m ≤ k ≤ n

 Store to a x j + b, load from a x k + d, and a x j + b = c x k + d

76

Finding dependencies

 Generally cannot determine at compile time

 Test for absence of a dependence:

 GCD test:

 If a dependency exists, GCD(c,a) must evenly divide (d-b)

 Example:

for (i=0; i<100; i=i+1) {

X[2*i+3] = X[2*i] * 5.0;

}

 Answer: a=2, b=3, c=2, d=0 GCD(c,a)=2, d-

b=-3 no dependence possible.

77

Finding dependencies
 Example 2:

for (i=0; i<100; i=i+1) {

Y[i] = X[i] / c; /* S1 */

X[i] = X[i] + c; /* S2 */

Z[i] = Y[i] + c; /* S3 */

Y[i] = c - Y[i]; /* S4 */

}

 Watch for antidependencies and output

dependencies:
 RAW: S1S3, S1S4 on Y[i], not loop-carried

 WAR: S1S2 on X[i]; S3S4 on Y[i]

 WAW: S1S4 on Y[i]

78

Reductions
 Reduction Operation:

for (i=9999; i>=0; i=i-1)

sum = sum + x[i] * y[i];

 Transform to…

for (i=9999; i>=0; i=i-1)

sum [i] = x[i] * y[i];

for (i=9999; i>=0; i=i-1)

finalsum = finalsum + sum[i];

 Do on p processors:

for (i=999; i>=0; i=i-1)

finalsum[p] = finalsum[p] + sum[i+1000*p];

 Note: assumes associativity!

