


1.2 Purpose of this document

This document is intended to break the chain of simulator initiation. This



Figure 1: The Architectural Business Cycles of SESC.

2.4 Stakeholders



the users are usually commited once the code has been verified to work. Other



Figure 2: The ABC of the i-acoma group.

5









Figure 3: The class interactions that model the pipeline.

Justification

It is very important that emulation without modeling timing be very fast. In
many benchmarks there are lengthy initialization sections, which may be longer
than the main portion of the program.

In “rabbit mode,” in which Instructions are only emulated and no timing
simulation is performed, the simulator executes instructions about 1000 times
faster than in full simulation mode.

3.3 Pipeline view

In SESC, the GProcessor (generic processor) object type coordinates interac-
tions between the different pipeline stages. The upper-level interface to the
GProcessor object is the advanceClock() function. The advanceClock() func-
tion advances each stage in the pipeline one clock cycle. It does this by first
calling a function to fetch instructions into the instruction queue. It then calls
a function to issue instructions from the queue into a scheduling window. There
are two clusters that schedule and execute instructions, one for integer and
one for floating-point instructions, and each has its own scheduling window.
Instruction scheduling and execution is handled in other parts of the simula-
tor. Finally, a function is called to retire already-executed instructions from the
reorder buffer.

All of the class interactions that model the pipeline are shown in Figure 3.

9





queue for each cluster. The issue() function calls addInst() for each instruction.
If addInst() fails for an instruction, issue() returns, and issue() will try again in
the next cycle to issue that instruction.

The addInst() function checks several things before it confirms that the
instruction can be issued. First, it checks that there is space in the reorder
buffer. Second, it checks that there is a free destination register. Third, it
checks that there is space in the scheduling window for the cluster. Finally,
based on the specific resource that an instruction uses, it performs other checks.
For example, for loads, it will check that the maximum number of loads has



Figure 4: The Resource class hierarchy.

are ready for execution in a specific Resource, as each Resource can only execute
a small fixed number of instructions per cycle.





referred to as L1 caches. Below this is a larger, slower L2 cache. In many con-
figurations, there is also an off-die L3 cache that is even larger and slower than
the L2 cache. Caches have many parameters. SESC models d(s)-fferent cache:

• S(s)-zes

• Hit & Miss latencies

• Replacement policies

• Cache-line sizes

•



Figure 5: Interconnection network class organization.

The important thing is that all types of Caches and Buses inherit from a
common class, MemObj, which defines a common interface consisting of ac-
cess(), returnAccess(), and other less important functions. (ReturnAccess() is
called by goUp() when an access returns to a higher-level cache from a lower-
level cache.) This common interface allows fully-configurable cache hierarchies.
Each Cache subtype can have a different manner of handling requests internally,
as long as it conforms to this interface to upper and lower-level caches.

In a multiprocessor system, at the lowest level, each processor’s caches and
the main memory are connected. The manner in which they are connected is
described now.

3.5 Interconnection network

The interconnection network refers to the communication channel between pro-
cessors in a large multiprocessor system. Examples are a bus or a hyper-cube.

The job of an interconnection network in a parallel machine is to transfer
data from any source node to any desired destination node. The network is
composed of switches that route the packages from the source to the target.
Each network node contains a routing table, which stores network path and
status information and is used to select the most appropriate route to forward
the packages along.

Figure 5 shows a UML representation of the classes that compose the network
module. The InterConnection class represents the whole network layout. An
InterConnection object is defined by two components:

• A set of Router objects. The Router class represents a router in an in-

15



terconnection network. It decides where to send the packages it receives
according to the routing table and the ports traffic flow. Each Router







In this example, all intermediate compilation files and the final binary will
be stored in the build



Figure 6: The callback class hierarchy.

• virtual void call()=0:. Each concrete class will implement it.

•



Figure 7: T0e GStats class hierarchy.

been instantiated. Every GStats object subscribes itself to that global list of
statistics in its constructor.

Three classes derive from GStats:

• GStatsCntr: A simple counter.

• GStatsAvg: An average counter.

• GStatsMax: Stores the max value of all the Tiven values.

All of them must implement the reportValue() function, which prints the
value it stores or calculates. reportValue() will be called from the GStats
static report() function, which traverses the Tlobal list of GStats objects.

Figure 7 shows a simplified UML diagram of t0e GStats 0ierarchy.4.3 Pools

Some objects in SESC are allocated once and used until the simulation is fin-




