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Abstract—The proliferation of data in RDF format calls for
efficient and scalable solutions for their management. While
scalability in the era of big data is a hard requirement, modern
systems fail to adapt based on the complexity of the query. Cur-
rent approaches do not scale well when faced with substantially
complex, non-selective joins, resulting in exponential growth of
execution times. In this work we present H2RDF+, an RDF
store that efficiently performs distributed Merge and Sort-Merge
joins over a multiple index scheme. H2RDF+ is highly scalable,
utilizing distributed MapReduce processing and HBase indexes.
Utilizing aggressive byte-level compression and result grouping
over fast scans, it can process both complex and selective join
queries in a highly efficient manner. Furthermore, it adaptively
chooses for either single- or multi-machine execution based on
join complexity estimated through index statistics. Our extensive
evaluation demonstrates that H2RDF+ efficiently answers non-
selective joins an order of magnitude faster than both current
state-of-the-art distributed and centralized stores, while being
only tenths of a second slower in simple queries, scaling linearly
to the amount of available resources.

Keywords—RDF, SPARQL, MapReduce, HBase, Distributed
Indexing, Distributed Merge-Joins

I. INTRODUCTION

The Resource Description Framework (RDF) [4] has been
proposed for information representation and exchange in the
context of the Semantic Web [5]. RDF data is stored in the
form of 〈s(ubject), p(redicate), o(bject)〉 triples, in which a
relationship between subject and object is stated using the
predicate. SPARQL [7], the standard language for querying
RDF data, allows for a query to consist of triple patterns,
conjunctions, disjunctions, and optional patterns.

Several centralized RDF triple stores (e.g., [12], [13], [6],
etc) have been proposed, with subsequent research focusing on
creating efficient indexing structures for query processing (e.g.,
[8], [26], [21]). Such approaches materialize a different number
of index combinations that allow for significantly reduced
response times. Still, centralized solutions are vulnerable to
the growth of the data size [16], [24]. In response, distribution
of existing schemes and novel distributed ones (e.g., [15], [19])
aim to bring forth the desired scalability.

Current distributed triple stores decentralize some or all
the stages of RDF data management. Yet, they do not flexibly
adjust their behavior with respect to the query in hand, either
committing on a specific join algorithm or the execution
platform’s resources. SPARQL queries often require multiple

joins over a (possibly large) number of triple patterns and
variables that the query contains. Thus, a resolution engine
would need to adjust its execution with respect to both query
input and complexity. Single joins range in complexity as input
and selectivity range. As the number of joins and intermediate
results to be processed increase, this should, correspondingly,
not lead to an exponential growth of response times.

Distributed approaches have not yet taken advantage of
maintaining all permutations of RDF elements, namely spo,
pso, pos, ops, osp and sop indexes [26]. Such a scheme offers
the following advantages: (1) All SPARQL triple patterns
can be answered efficiently using a single index scan on the
corresponding index. For example, a triple pattern with bound
subject and variable predicate/object can be answered using
a range scan on the spo or the sop index. (2) Merge joins
that exploit the precomputed orderings can be extensively
employed. The existence of all six indexes guarantees that
every join between triple patterns can be done using merge
joins. More expensive join algorithms are needed only when
joining unordered intermediate results. In the H2RDF+1case,
we maintain both of these properties while moving towards a
distributed and scalable environment. We summarize the main
contributions of this work as follows:
• We devise an indexing scheme for storing RDF data

implemented in HBase [2], which allows bulk-import jobs to
load and index large RDF datasets. We optimize the retrieval
capabilities of our distributed index by applying aggressive
compression and minimizing the storage requirements. The
latter is coupled with the use of an intermediate result ma-
terialization that maintains groups of bindings. Our indexes
compensate the fact of being nearly 10× slower than disk-
based B+trees by achieving great scalability and parallel
scanning performance.
• We present fully scalable, distributed (MapReduce based)

versions of the well-studied multi-way Merge and Sort-
Merge join algorithms.
• We devise a join cost model and use the estimated cost of

each join to greedily decide on the order of joins and the
platform (central or distributed) of their execution.
• We perform a thorough experimental evaluation of our

system. Results show that H2RDF+ can be orders of mag-
nitude faster than a state-of-the-art centralized store [21]
for complex, non-selective joins, while being only tenths

1http://h2rdf.googlecode.com



of a second slower in selective ones. Moreover, it proves
6–8 times faster than its previous version [23] and up to
orders of magnitude faster than an alternative MapReduce-
based scheme [19]. H2RDF+ easily scales to 14 billion
triples (2.5TB) using a cluster of 35 VMs, providing linear
scalability in terms of the amount of available resources.

II. RELATED WORK

We present some of the most relevant RDF indexing
and querying systems, distinguishing them in two categories:
centralized and distributed systems.
Centralized Systems: Hexastore [26] is a centralized solution
that materializes six different indexes, one for each possible
permutation of subject-predicate-object values; these permuta-
tions are spo, pso, pos, ops, osp and sop. The spo index, for
instance, contains a list of predicates for each subject, while
each predicate p in the list points to a table that contains all
objects associated with s by p. These indexes allow the retrieval
of any simple triple pattern at minimal cost.

A similar approach is followed in RDF-3X [21] along with
query optimization strategies. RDF-3X employs six lexico-
graphic indexes (similar to [26]) as well as additional indexes
that collect statistical information for pairs and stand-alone
entities, amounting to a total of 15 indices. It extensively
uses merge joins in order to achieve good performance.
However, query execution highly depends on the amount of
main memory required to perform joins, presenting problems
with joins with small selectivity and large input. The use of
single threaded query execution limits RDF-3X’s scalability on
modern multi-core server architectures. RDF-3X is regarded as
a state-of-the-art solution in centralized RDF data stores.

In BitMat [9], RDF triples are indexed via a 3-dimensional
〈s, p, o〉 bit matrix. Each matrix element is a bit denoting the
presence or absence of the corresponding triple. This matrix
is flattened to 2-d matrices creating multiple indexes for all
possible combinations of subject-predicate-object. However,
this approach is effective only in a main-memory environment.

Other frequently-used, efficient centralized systems include
Virtuoso [13], Jena [12] and OWLIM [20]. Still, all afore-
mentioned approaches run on a single machine, limiting their
storage and processing capacity.
Distributed Systems: In order to tackle the big-data challenge,
research has recently moved onward to distributed RDF data
management systems. A first attempt in this direction, 4store
[15], distributes a single pos index over the nodes of a cluster,
and employs distributed join algorithms to execute SRARQL
queries. However, apart from the deficiency ensuing from
having a single index, 4store does not adapt its performance
for multiple join queries of various selectivity.

HadoopRDF [19] uses Hadoop Distributed File System
(HDFS) files named after predicate values to partition the
input RDF data, thereby creating a pos index. It is not a
fully functional index though, as it can only retrieve subject-
object combinations for a given predicate, but not, for instance,
subjects for a given predicate-object combination. HadoopRDF
performs SPARQL joins in the MapReduce framework, em-
ploying an algorithm that greedily reduces the total number
of remaining MapReduce joins at each step. Remarkably,
this greedy planner does not take into consideration the join

selectivity. Finally, joins are executed only with MapReduce
jobs, inducing large overheads for selective queries.

Efforts have also been made towards optimizing distributed
joins using MapReduce [11]. In this work, the authors compare
different algorithms for joining big log tables, stored in raw
HDFS files. The main difference with H2RDF+ is that we in-
dex our data using HBase. This means that we always process
only the amount of data required for each join without having
to process the whole dataset. The join algorithms presented
in [11] do not take into account any data preprocessing and
indexing. We also use a multi-way join scheme that differs
from the two-way joins implemented in [11].

H2RDF [23] uses a three-index scheme and depends on
the Partial Input Hash-join. This algorithm exploits HBase
indexing and checks whether the join contains small input
patterns. If this is the case, only those are read from the indexes
during the map phase. The remaining patterns are joined using
get operations on the reduce phase of the join. H2RDF also
uses adaptive centralized and distributed execution. The main
differences with H2RDF+, can be found in the join algorithms,
the number of maintained indexes (three versus six), the more
detailed statistics and the type and size of IDs

An alternative proposal is presented by Huang et al. [18];
this method starts out by partitioning the RDF graph into
distinct subgraphs, each stored in a single node running a
local RDF-3X instance. Moreover, in a replication scheme,
each node keeps information on the graph contents within n
hops from the contents it owns; this provision allows for unob-
structed parallel processing of SPARQL queries satisfying an n
hop guarantee. In case this guarantee is not satisfied, Hadoop
is invoked for distributed join processing. The proposed system
suffers from the following drawbacks:(1) Slow import: apart
from the centralized graph processing, it also needs a large
amount of time to load the corresponding data to individual
RDF-3X instances.(2) Its MapReduce joins implement a non
optimized, 2-way hash-join scheme.(3) The n-hop guarantee
requires size of replication data exponential to n.

Zeng et al. [27] introduce Trinity.RDF, a distributed, in-
memory system. They propose a query execution model based
on graph exploration that can be viewed as a sequence of semi-
joins similar to the approach followed in BitMat. The main
drawback of this system is that its performance is bound by
the main memory capacity of the cluster, as the whole set
of triples needs to be loaded in main memory. This is not a
scalable approach, especially given that clusters are comprised
by commodity nodes. Moreover, local semi-join results are
gathered at a central node responsible for producing the final
results. This server can be the bottleneck of the query execution
when: 1) Handling query graphs that contain cycles. The semi-
join query execution engine employed cannot fully reduce the
result size for these graphs [10], thus overloading the last step
of the execution. 2) The query output is really large. In this
case the last server will need to generate and write the whole
output. This process is limited by the sequential iteration over
the result set and the large write I/O requirements.

III. H2RDF+ SYSTEM

A. Indexing Scheme

1) HBase Indexes: HBase is a distributed, NoSQL key-
value store that can handle large amounts of data using



commodity machines. HBase tables are, in practice, range
partitioned sorted key-value maps. In our system, we use an
HBase table for each index. As HBase uses a key-value model,
our indexes store all triples in keys and leave the values empty.

RDF triples contain long string URIs and literals that can
add a lot of space overhead, especially in the case of multiple
indexes. To achieve a space-efficient implementation, we use
IDs instead of strings and keep two separate HBase tables that
work as dictionaries to translate string values to IDs and vice
versa. This mapping from string-based IDs to byte-based IDs
is created during data import with respect to the occurrence
frequencies of the string literals in the dataset: A very frequent
predicate will get an ID with value close to zero. In order to
take advantage of the frequency related IDs we apply byte-
level, variable-length encoding when storing IDs in HBase.
Variable length encoding leads to smaller byte representations
for frequently used values and thus achieves high compression.

2) Index Statistics: Apart from the six indexes described
above, we keep aggregated index statistics that can be used to
estimate triple pattern selectivity as well as join output size
and join cost. We have two categories of aggregated indexes:
i) With two out of the three triple elements bound, namely
sp o, ps o, po s, op s, os p and so p. For example, the sp o
table contains a set of (subject, predicate, count) key-values,
were the count represents the number of triples that contain
the respective combination of subject, predicate.
ii) With one bound element, namely s po, p so, p os, o ps,
o sp and s op. For example the p so index contains a set
of (predicate, count, average) key-values, where count is the
number of distinct subjects related to this predicate and average
is the average number of objects related to each subject.

3) MapReduce Bulk Import: In order to handle web scale
RDF datasets we use a bulk loading process that avoids
HBase API calls for each tuple insertion; instead, bulk import
MapReduce jobs directly create HFiles (the HBase file format)
which are then loaded directly in HBase tables. Our import
procedure consists of four highly scalable MapReduce jobs:
The first job operates similarly to a wordcount MapReduce
job but also creates the following: 1) for each block of RDF
triples, it creates a file that contains the distinct string values
that are present inside the block and 2) it samples input triples
and creates balanced partitions on both the distinct string value
space and the indexing space (for all possible triple orderings).
The second job gives (byte) IDs to string values according to
their word-counts and loads both the string-to-ID and ID-to-
string HBase dictionaries. This job uses the partitioning on the
distinct string value space computed in the first job in order
to achieve load balancing.
The third job translates the distinct string value blocks and
creates for each block of RDF triples a file that contains the
mapping between string values and IDs.
The last job parses again the RDF triples. First, each mapper
reads the translation file for the corresponding RDF block
and loads it into a memory hash map. It then parses the
RDF triples, translates the string values and maps all different
orderings using the indexing space partitioning computed in
the first job. Each reducer takes as input a sorted range
partition of the indexing space and, while iterating over it,
computes the aggregated statistics described above and creates
the corresponding HFiles for all the indexes.

B. Join Execution Algorithms

Our work makes a twofold contribution relative to the
join execution engine: We present a multi-way merge join
algorithm and a sort-merge join algorithm, both executed over
our distributed index. The former performs efficient joins over
already sorted data (i.e., the HBase index tables); the latter
performs joins when some of the data is unsorted (i.e., when
intermediate results exist). The two algorithms can be executed
in both distributed (via MapReduce) and centralized (over a
single cluster node) mode.

1) MapReduce Merge Join Algorithm: This algorithm is
designed to join multiple triple query patterns over the same
variable. For example, suppose that we want to perform the
following join on variable department:
?person ub:memberOf ?department .
?department ub:subOrganizationOf ?university .
?department rdf:type ub:Department .
We can get the triples ordered by department if we do the
following three range scans: (for each range scan we specify
the index table and the bound values in the respective or-
der) {pos, ub:memberOf}, {pso, ub:subOrganizationOf}, {pos,
rdf:type, ub:Department}. To execute the distributed merge
join over those scans, we first specify the largest scan (i.e.,
the scan that spans the most HBase regions). We implement
the merge join algorithm as a Map-only job over the regions
of the largest scan. Each mapper processes a sorted partition
of the scan (region), which translates to a sorted partition over
the join variable’s keys. The mapper has a local scanner over
the large pattern and initializes the respective scanners over
the other query patterns respecting the range of the the join
variable’s keys.

For example, let us assume that the largest pattern of
the above join is the first containing two regions with the
following join variable ranges: [Dep0, Dep5) and [Dep5,
Dep10). Note that we use string values here for readability;
the partitions are in the ID space. The first mapper will
initialize two scanners: {pso, ub:subOrganizationOf, [Dep0,
Dep5)}, {pos, rdf:type, ub:Department, [Dep0, Dep5)}
and merge join them with the local region scanner. The second
mapper will handle the range [Dep5, Dep10) respectively.

2) MapReduce Sort-Merge Join Algorithm: This algorithm
is only used when we join intermediate (thus unordered)
results. It can take as input one or more intermediate results
and one or more triple queries. For example, suppose that we
want to perform the following join on variable department:
?y ?department ?w . (1)
?z ?department . (2)
?person ub:memberOf ?department . (3)
?department rdf:type ub:Department . (4)
The first two patterns present intermediate results that contain
bindings for all the variables depicted in the pattern’s name.
These patterns are not ordered by the join variable. At first,
we check the triple query scans (triple patterns (3) and (4))
and find the maximum partition of the join variable in the
same way that we described above. The sort-merge join is
executed as a MapReduce job that takes as input only the
intermediate result patterns (triple patterns (1) and (2)). Each
mapper reads bindings from the intermediate results and maps
them using as key the binding of the join variable. The job
uses the maximum join variable partition to produce a global



ordering of the reduce keys. This means that each reducer
will get a sorted range of the join variable’s keys. The reducer
initializes the index scans for its respective key range and then
merges all intermediate and triple patterns by iterating over the
sorted input. In case we need to join only intermediate results
we utilize a hash partitioner and perform a hash join.

For example, let us assume that the largest pattern of
the above join is, as before: [Dep0, Dep5), [Dep5,
Dep10). The first reducer will get all the intermediate
bindings in the first range and will initialize two scanners:
{pos, ub:memberOf, [Dep0, Dep5)} and {pos, rdf:type,
ub:Department, [Dep0, Dep5)}. The reducer will iterate
over all patterns and produce the join results. The same will
happen with the second reducer over the second range.

3) Centralized Join Algorithms: We also implement the
classic versions of the merge and sort-merge join algorithms
in a centralized environment. The only difference is that we
use HBase scanners in order to iterate over the sorted relations
rather than local B+-tree or file scanners.

4) Intermediate results format: SPARQL queries involve
multiple joins and feeding results of one join to the next.
Intermediate results can become really large and grow expo-
nentially with each subsequent join. This is why we need to
have a space-efficient representation of the intermediate results.
Standard row oriented databases create all result tuples at the
end of each join. Instead, we opt for a lazy materialization
of intermediate tuples and try to maintain grouped results as
much as possible. Our lazy materialization maintains groups
of bindings that contain: 1) a set of the names of variables
contained in the result, 2) for each variable, a list of its
bindings. The bindings contained inside a group must satisfy
the property of all-to-all connection, i.e., the respective tuples
can be materialized by a nested loop over all variables. As an
example, suppose that we execute the following join:
?department ub:subOrganizationOf ?university .
?student ub:undergraduateDegreeFrom ?university .
Our sorted indexes can retrieve all departments and students
grouped per university. We need to exploit this grouping as
much as possible in order to avoid generating all intermediate
result tuples. Assume our database contains 2 universities, each
having 2 departments and 3 students. The row-oriented results
of the join are depicted in Fig. 1 (left). Instead of materializing
all these combinations we store grouped results as depicted in
Fig. 1 (right). Note that there is no explicit connection between
students and departments (students and departments connect
only with the university and not with each other), thus the all-
to-all connection property applies. Extending our example with
larger figures, if our database contains 100 universities, each
of them with 30 departments on average and 100K students, a
row-oriented scheme would create 100× 30× 100K = 300M
result tuples by replicating a lot of times the IDs of universities
and departments. To store these results, we would need to write
three times as many IDs (900M ). For the same example, our
scheme would create 100 groups, one for each university, each
group containing 30 bindings for the department variable and
100K bindings for the student variable. Thus, we would need
to output 100+100×30+100×100K = 10,003,100 IDs which
is orders of magnitude smaller that the previous requirement.
We also apply byte level, variable length encoding on IDs and
achieve a highly compressed output size.

Fig. 1. Grouped intermediate results

As stated before, groups are split on demand according to
the sequence of joins. For example, lets assume that we want
to use the above results in the following join:
?department ?university ?student .
?professor ub:worksFor ?department .
This join, on variable department, is executed using the sort
merge join algorithm described in the previous section. In
Fig. 2 we can see how we use the grouped results in the
join procedure. Initially, in the map phase, we split the group
according to the join variable, thus we create one group for
each department. Note that the map output is not split across
the student bindings because those bindings maintain the all-
to-all connection with the rest bindings. In the reduce phase
groups of professors per department are retrieved from the
index and are merged with the inputs to form the output groups.

C. Query Planning and Execution

Deciding on the query execution plan is an important
aspect that greatly influences performance, since SPARQL
queries usually require multiple joins on different variables.
The H2RDF+ planner decides on the execution order of the
different joins so as to minimize the total query execution
time. To find the optimal join order we have to consider the
different combinations in which the joins can be performed.
Obviously, the number of choices grows exponentially to the
number of joining variables, making the problem computation-
ally expensive. Instead, we use a greedy, cost-based, online
planner that decides on the join that must be executed in
every step of the query. To derive the costs of possible joins
we devise a detailed join cost model that takes advantage of

Fig. 2. Join on grouped intermediate results



our stored statistics. Our cost model can be also used to help
the planner decide on whether the join will be executed in a
centralized or a distributed fashion. The incentive behind this
decision is that distributed MapReduce jobs cannot offer real-
time response times for small joins and are beneficial only
in case of large joins. More sophisticated approaches, like
dynamic programming planners[21], can be also applied but
this work is beyond the scope of this paper. In this section we
present the join cost model as well as our greedy join planner.

1) HBase scan performance evaluation: Our join execution
heavily depends on HBase scans and thus in order to derive an
applied cost model we need to stress-test their performance.
The key parameters of a scan are the seek latency and the read
throughput. After doing some experiments on scanning our
indexes we found out that a seek operation takes on average
16ms and the average read throughput reaches 400,000 key-
values(triples)/second. Detailed performance evaluation for
those features can be found in Section IV-A. These values are
infrastructure specific and can change across different instal-
lations but they can be estimated by a simple benchmarking
test that runs once for every different installation.

We integrate this performance knowledge into our merge
join algorithm in order to make it more efficient. Except
from sequentially scanning the input relations a merge join
algorithm may need to jump forward on one relation if we
know that there are no possible join results in this range. In
this case we need to take the decision of whether to seek
to the next position by initializing a new scanner or read all
intermediate values sequentially. From the above metrics we
can easily note that the time needed for a seek operation is
equal to the time needed to sequentially read nearly 6,400 key-
values. Thus the merge join algorithm uses the seek operation
only if it is expected to discard more than 6,400 key-values.

2) Merge join cost model: The merge join algorithm is
controlled by its input triple queries(Q). The total cost of the
join (in terms of completion time) is:

MJcost(Q) =
∑
i∈Q

ReadKeys(Q, i)/thr (1)

ReadKeys(Q, i) = min{(min
j∈Q

nj) · oi · SeekOverhead, nioi} (2)

ni: number of join variable’s bindings for the ith query.
oi: average bindings of the non-joining variables corresponding
to one join variable binding. Refers to the ith query.
thr: the scan throughput discussed earlier.
SeekOverhead: the seek overhead (6,400 key-values)
ReadKeys(Q,i): the number of key-values that will be read from
the ith query.

The cost of the merge join algorithm depends on the
number of key-values that need to be read. To estimate this size
we first find the minimum number of input join keys among
the joining queries. A merge join algorithm would need to read
at most that amount of keys from each relation using seeks to
pass over irrelevant keys. As stated before we use an heuristic
to decide whether to perform a seek operation and thus in the
worst case scenario our merge join algorithm would always
seek paying each time the SeekOverhead.

3) Sort-Merge join cost model: In this algorithm we have
to join both a set of input scans(Q) and a set of intermediate
results(I). The total cost of the join (in terms of time) is:

Algorithm 1 H2RDF+ PLANNER

1: V ← {v1, v1, . . . , vn} //join variables
2: TQ ← {tq1, tq1, . . . , tqm} //triple queries
3: //TQ(v) triple queries that contain variable v
4: while V 6= empty do
5: Jstruct ← empty //Join’s required information
6: vjoin ← minvi∈V {Greedy(vi, TQ(vi))}
7: Jstruct.addJoin(vjoin, TQ(vjoin))
8: V.remove(vjoin)
9: TQ.remove(TQ(vjoin))

10: if Jstruct.executionType() = MR then
11: executeMapReduce(Jstruct)
12: else if Jstruct.executionType() = Cent then
13: executeCentralized(Jstruct)
14: end if
15: end while

SMJcost(Q, I) = (2
∑
i∈I

nioi +
∑
i∈Q

ReadKeys(Q ∪ I, i))/thr (3)

The cost of the sort-merge join algorithm is divided in two
main parts. The first part is the cost of joining the intermediate
results. The intermediate patterns are read twice, once in the
map and once in the reduce phase. For the triple queries we
use the same estimation described in the above section.

4) Join Planner: The cost model described in the previous
section is a step towards finding the optimal join execution
plan, i.e., the join order with the minimum total execution
cost. Our planner uses a greedy algorithm that in each step of
the execution selects the smallest cost join to be executed.

Our greedy join planner is presented in Algorithm 1. Set
V contains all the variables that need to be joined in order to
answer the query. Set TQ contains all the triple queries that
need to be joined. While V contains more variables we need
to execute more joins. Using our greedy function we select the
most beneficial variable to be joined. The selected variable is
fully joined in the current job (multi-way join), which means
that all its queries are joined and we remove it from V .

Our greedy function is presented in Algorithm 2. This
function checks if the join requires a merge or a sort-merge
join algorithm and then computes the costs of executing the
join in centralized or distributed manner. The centralized cost
is the cost described in the previous section. The distributed
MapReduce cost is computed by dividing the centralized cost
by the minimum of partitions and number of mappers in the
cluster. This number is the maximum amount of parallelism
that will be present when executing the distributed job. We
also add an overhead called MRoverhead which is the amount
of time required to setup a MapReduce job. A MapReduce
job with no input data needs at least 30 sec to finish. Thus our
incentive is to use centralized jobs when quick responce times
can be achieved and leverage the parallelism of distributed
execution only when we face large joins.

IV. EXPERIMENTAL RESULTS

In this section we present a thorough performance evalua-
tion of the H2RDF+ system.
Cluster configuration: Our experimental setup consists of an
OpenStack private cluster of 6 VM containers. Each container
has a 2×6-core Intel Xeon R©CPUs at 2.67GHz, 48 GB of
RAM and two 2TB disks setup with RAID 0. Worker VMs
feature a 2-virtual core processor, 4GB of RAM and 300GB



Algorithm 2 Greedy(v, TQ)
1: //TQ contains the triple queries to be joined
2: //Split TQ in scans and intermediate results
3: (Q, I)← splitPatterns(TQ)
4: if I 6= empty then
5: //Sort-merge join
6: cost← SMJcost(Q, I)
7: else
8: //Merge join
9: cost← MJcost(Q)

10: end if
11: //Compute MapReduce Cost
12: MRcost← cost/min(patitions,mappers) + MRoverhead
13: if cost < MRcost then
14: Jstruct.addExecutionType(Cent)
15: return cost
16: else
17: Jstruct.addExecutionType(MR)
18: return MRcost
19: end if

of storage space, allowing the cluster to support a total of 36
VMs. The clusters we use for our evaluation consist of variable
numbers of VMs (10 to 35) plus a single VM in the role of the
HDFS, MapReduce and HBase master. Each worker VM runs
2 mappers and 2 reducers, each consuming 512MB of RAM.
We utilized Hadoop v1.1.2 and HBase v0.94.5 respectively.

Compared Systems: We compare the performance of
H2RDF+ against three state-of-the-art RDF stores: RDF-3X
[21], HadoopRDF [19] as well as the first version of our
distributed system H2RDF [23]. We evaluate the latest version
(v0.3.7) of RDF-3X [21], [22]. HadoopRDF was built using
the latest SVN rev. 158 from the project repository.

All the above systems process queries using dictionary IDs
rather than strings and URIs. We have observed that the last
step of translating query result IDs to strings is a challenging
task for all compared triple stores. In some cases, it requires
time comparable or even larger than the actual processing. In
this paper, we focus on the join execution engine. Thus, in
order to provide a fair comparison, we have also removed the
translation task from all the compared systems.

Data Sets Used: To test the system under web-scale,
realistic conditions we utilize two datasets. The Yago2 dataset
[17] consists of real data gathered from various resources such
as Wikipedia, WordNet, GeoNames, etc, and contains more
than 120 million triples. This dataset is relatively small; we
use it to show that distributed query execution can perform
better even for small datasets when large non-selective queries
are required. The LUBM dataset generator [14] creates datasets
with academic domain information, enabling a variable number
of triples by controlling the number of university entities.
By varying this parameter between 1K to 100K, we create
datasets ranging from 1.4 million (25GB) to 13.8 billion triples
(2.5TB). This dataset is widely used to compare performance
of triple stores especially when arbitrarily large datasets are
required. Lehigh university has also published a suite of test
queries [3] that offer a good mixture of SPARQL queries.

A. Index comparison

In this section we evaluate the performance of our indexing
scheme. Initially, we consider space requirements. As men-
tioned in Section III-A1, H2RDF+ uses an aggressive compres-

sion scheme using variable length encoding and smaller IDs for
frequent string values. We also compress our index tables using
the Google Snappy compression [1], also known as “Zippy”
compression. We choose the Snappy library because it offers
very high decompression speed and reasonable compression.
Snappy’s CPU-efficient decompression algorithm makes it a
perfect candidate for NoSQL stores by exploiting the trade-off
between I/O and CPU bandwidth.

TABLE I. COMPARISON OF STORAGE REQUIREMENTS

Dataset Raw Size RDF-3X H2RDF H2RDF+ H2RDF+(no Snappy)
LUBM1k 28 GB 9 GB 25 GB 27 GB 7 GB

LUBM10k 276 GB 77 GB 214 GB 241 GB 62 GB
LUBM20k 549 GB 156 GB 529 GB 545 GB 121 GB

Yago2 26 GB 12 GB 33 GB 35 GB 10 GB

In Table I we register the storage requirements of the
compared systems for the LUBM and Yago datasets. The “Raw
Size” column contains the size of the dataset serialized using
the N-Triples format. Although storing 6 rather than 3 indexes
and more detailed statistics, H2RDF+ manages to have smaller
space requirements than its previous version due to: 1) the
smaller ID values, as H2RDF uses the 8-byte MD5-hash of the
string values athe latests ID, 2) the byte-level variable length
encoding in conjunction with the frequency-aware ID mapping,
3) the block level Snappy compression. RDF-3X also offers a
highly compressed storage scheme due to its gap compression
[21] (stores only the difference between subsequent triples in
the index). The difference between the storage requirements
of RDF-3X and H2RDF+ results mainly from the frequency-
aware ID mapping and the block-level Snappy compression
used in H2RDF+ (achieves ∼70% storage reduction).

We also study the retrieval efficiency of the indexes and
their respective technologies. As mentioned in Section III-C1,
scan throughput and seek latency are very important metrics
that need to be optimized and evaluated. From Table II, we
deduce that our new indexing scheme achieves substantial
improvements in all categories compared to our previous
one. We notice a 54% improvement in local (the client is
in the same host with the HBase server responsible for the
data) scan throughput and 100% improvement in remote scan
performance (the client scan data from a remote HBase server).
We also greatly reduce the latency of a seek operation due to
the more compact representation of HBase key-values.

TABLE II. COMPARISON OF SCAN THROUGHPUT AND SEEK LATENCY
RDF-3X H2RDF H2RDF+

Local Scan Throughput 17 0.73 1.13(million triples/sec)
Remote Scan Throughput - 0.2 0.4(million triples/sec)

Seek latency cold cache (ms) 1 86 16
Seek latency hot cache (ms) 0.2 17 7

Compared to RDF-3X, scan/seek times are almost an order
of magnitude larger. RDF-3X maintains extremely efficient
clustered B+trees that are placed in local disk storage. Our in-
dexes suffer from retrieval overheads related to the distributed
architectures of both HBase and HDFS. This performance
overhead is alleviated by the capability of distributed, con-
current scanning inside MapReduce jobs.The impact of using
distributed indexes will be made visible in the next section in
the case of small, selective queries; the effect disappears when
processing distributed, non selective joins.



TABLE III. PERFORMANCE COMPARISON OF H2RDF+, H2RDF AND HADOOPRDF FOR LUBM AND YAGO2 DATASETS
Yago2 LUBM10k LUBM20k LUBM100k

H2RDF+ H2RDF HadoopRDF H2RDF+ H2RDF HadoopRDF H2RDF+ H2RDF HadoopRDF H2RDF+ H2RDF
Import(min) 31 26 72 Import(min) 182 168 198 385 312 815 1154 985

YQ1(sec) 0.9 0.9 52 LQ1(sec) 0.6 0.6 152 0.8 0.8 378 0.8 0.9
YQ2(sec) 1.5 1.7 68 LQ3(sec) 0.8 0.8 231 0.9 1 449 1.1 1.1
YQ3(sec) 154 952 1832 LQ4(sec) 2.1 2.4 1289 2.3 2.4 2650 2.4 2.5
YQ4(sec) 87 728 1495 LQ2(sec) 95 635 915 131 880 1367 412 1853

LQ9(sec) 151 787 1488 292 1034 2933 890 2761

TABLE IV. PERFORMANCE COMPARISON OF H2RDF+ AND RDF-3X
Yago2 LUBM10k LUBM20k

Resources 8CPU/8GB RAM 64CPU/128GB RAM 8CPU/8GB RAM 64CPU/128GB RAM 8CPU/8GB RAM 64CPU/128GB RAM
H2RDF+ RDF-3X H2RDF+ RDF-3X H2RDF+ RDF-3X H2RDF+ RDF-3X H2RDF+ RDF-3X H2RDF+ RDF-3X

Import(min) 164 157 26 149 Import(min) 912 605 162 576 2075 1526 349 1398
YQ1(sec) 0.9 0.7 0.9 0.7 LQ1(sec) 0.6 0.4 0.6 0.3 0.8 0.4 0.9 0.4
YQ2(sec) 1.5 1 1.6 0.9 LQ4(sec) 2.1 0.8 2.1 0.7 2.3 0.8 2.2 0.8
YQ3(sec) 241 3037 138 1929 LQ2(sec) 373 2297 89 1277 706 Failed 119 2065
YQ4(sec) 123 2973 79 2068 LQ9(sec) 411 68 141 51 753 Failed 264 289

B. Direct Comparison

In order to provide a direct, fair comparison among the
different systems, we first test the performance of H2RDF+
versus the other distributed systems. We utilize four datasets,
namely LUBM with 10k, 20k and 100k universities and Yago2,
consisting of 1.3 billion, 2.7 billion, 13.8 billion and 120 mil-
lion triples respectively. H2RDF+, H2RDF and HadoopRDF
were executed using a cluster of 25 worker and 1 master nodes.
In Table III we register the data import times and response
times for the selected queries. For a fair comparison to the
centralized RDF-3X, we run both systems using the same
total amount of resources: For RDF-3X, we use two single-
server configurations (a 2×Quad-Core with 8 GB RAM, 8 GB
swap and 1TB disk and a 4×16-Core with 128 GB RAM and
1TB disk); for H2RDF+, we use as many worker VMs as the
corresponding RDF-3X’s server capacity allows. These results
are reported in Table IV.

Data Import: This is the time needed for all systems
to load the full dataset according to their storage scheme.
HadoopRDF needs to execute four different MapReduce jobs
which take as input the whole dataset. This means that it needs
to scan the data four times resulting in low import performance.
Additionally, these jobs do not equally partition the reduce
input data and thus overload some reducers while leaving oth-
ers idle. H2RDF+, despite its complex and more sophisticated
indexing scheme, proves twice as fast as HadoopRDF. We also
note that H2RDF+ manages to import 3 additional indexes and
keep more detailed statistics than H2RDF at a mere 10-20%
overhead. RDF-3X, being a centralized system, needs to parse
all triples sequentially in order to create its indices. It also
reads the input data several times. This iterative scan of input
data results in an increasing import complexity: while the size
of dataset doubles, the time needed to load the data triples.
RDF-3X outperforms H2RDF+ when running on a small server
but fails to scale and proves 2–3 times slower when running
with more resources.

Query Performance: LUBM provides a SPARQL query
benchmark [3]. The compared systems do not support OWL
reasoning so we only test queries that do not require reasoning
or in some cases (e.g., query LQ9) we remove the hierarchy of
the rdf:type predicate by querying for explicit types with
no subclasses. Due to lack of space, we show results for five
such queries (identified as LQ) that provide a good mixture of
both simple and complex structures. The selected set covers
all variations of the LUBM test queries; moreover they are
able to highlight the different decisions and characteristics of

H2RDF+ and the compared systems. Yago2 does not provide
benchmark queries; Relative to the LUBM queryset, we have
created a set of representative test queries. In detail, there
are two main categories of SPARQL queries tested: the ones
that contain some selective pattern and have small number
of results (LQ1, LQ3, LQ4, YQ1, YQ2) and the ones that
contain no selective patterns and represent more complex join
structures (LQ2, LQ9, YQ3, YQ4). A short description on the
chosen queries is provided in the Appendix.

H2RDF+ performs noticeably better in queries with large
input: We exploit the orderings provided by our indexes via the
distributed Merge and Sort-Merge join algorithms and achieve
almost 7× performance gain compared to H2RDF and 10×
compared to HadoopRDF. We also outperform RDF-3X in
most of the complex queries both when running on the small
and the large server configuration. For example, for LQ2, RDF-
3X requires almost 12GB of memory to execute the query for
LUBM10k and proves 6× slower than H2RDF+ in the small
server setting. For LUBM20k (and large server setting) this
increases to 14× slowdown compared to H2RDF+. Our system
achieves 3–6× smaller response times when moving to a larger
cluster, while RDF-3X’s speedup is mainly attributed to the
bigger amount of memory (no swapping). In LQ9, RDF-3X
manages to perform better, as it loads query data in memory.
Yet, this approach does not scale; the system runs out of
memory for LUBM20k on the small server.

For small, selective queries H2RDF+ uses centralized ex-
ecution and manages to obtain performance comparable to
RDF-3X. The difference in performance is mainly attributed to
the lower scan throughput and the higher seek latency provided
by our distributed HBase indexes. We also note that there is
a small improvement compared to H2RDF due to the more
optimized indexing scheme. We also note that HadoopRDF
has really poor performance for all selective queries due to
the fact that it only executes MapReduce joins that process all
input data and cannot take advantage of query selectivity.

From these results, we deduce that H2RDF+ processes
all query types according to the goals set in its design: It
manages to correctly identify selective vs. non-selective joins,
performing either distributed or centralized joins, each join
being performed in the most advantageous strategy. In high-
selectivity queries, it is almost as efficient as RDF-3X, with a
small difference (few tenths of a second) due to the fact that
our index is shared across multiple cluster nodes. This small
performance difference is alleviated by our system’s ability to
serve multiple concurrent queries (see Section IV-D). For more



data-intensive queries, it proves greatly superior to both central
solutions and competitive Hadoop-based schemes due to both
our join strategy and the ability to group multiple bindings.

LUBM full scale evaluation: Table III also contains
H2RDF+ and H2RDF import and query execution times for the
LUBM100k dataset that consists of 14 billion triples (2.5 TB),
using a cluster of 1 master and 35 worker nodes. Our system
achieves an import speed of 202 Ktriples/sec, a state-of-the-art
performance according to [25]. Query response times follow
the trend described in the previous experiments: For selective
queries, centralized joins are selected, resulting in times that
range between 0.8 and 2.4 sec. For non-selective queries with
huge input sizes, such as LQ2 and LQ9, it achieves 3–4 times
smaller response times compared to H2RDF.

C. Join algorithm comparison

In this section, we compare the performance of our join
algorithms over joins with different input sizes. In order to
test the scalability of our algorithms we generate the fol-
lowing benchmark setup: We use a cluster of 25 VMs and
the ud:takesCourse property from the LUBM20k dataset
which contains 515 million triples that describe connections
between students and courses. We randomly sample the cor-
responding data using variable sampling rates and store the
sampled triples in a new HBase index. Fig. 3 shows the
execution times required to join the full ud:takesCourse
relation with the sampled one using different join algorithms.
We range the sampled triples from 5 to 500 million.

5 50 0.5K 5K 50K 0.5M 5M 50M500M
# triples in sampled input

100

200

300

400

500

T
im

e 
(s

ec
)

Centralized Merge Join
MR Merge Join
MR Sort-Merge join
MR Partial Input Hash join
MR Full Input Hash join

Fig. 3. Join algorithm scalability

We notice that for joins that contain one selective input
triple pattern, the most efficient join strategy is the centralized
Merge join algorithm. This is because MapReduce joins always
incur an initialization overhead of almost 30 seconds. The
performance of the centralized join deteriorates with the input
size due to the fact that the algorithm does not exploit the
parallel scanning capabilities of our distributed indexes.

Relative to MapReduce-based join algorithms, we consider
the Merge, Sort-Merge, Partial Input Hash [23] and the Full
Input Hash [23] join algorithms. We can clearly note that the
Merge join algorithm has the best scalability performance due
to the fact that it performs the join on sorted relations and
minimizes the overhead of data movement. But this algorithm
cannot be executed on intermediate, non-sorted relations. In
this case, we can see that the Sort-Merge join proves to be
the most scalable join algorithm. The difference between the

Sort-Merge and the Partial Input Hash joins is the MapReduce
partitioning method. The Sort-Merge join partitions the input
data using a total order partitioner that takes advantage of the
sorted indexes while the Partial Input join partitions using a
Hash partitioner. This has impact on the reduce phase of the
join: The Sort-Merge join performs a scalable merge join in
the reduce phase while the Partial Input join executes a random
HBase get on the indexes for each key. The second approach
proves not scalable when the small input increases in size.
Lastly, in the case that we have no sorted-indexed relation in
the join, we need to fall back to the Full Input Hash join.

D. Concurrent execution of selective queries

For the case of centralized joins, we show that concurrent
execution can result in very large query throughput. To achieve
this, H2RDF+ utilizes a zookeeper quorum that is responsible
for the distribution of centralized joins to the cluster nodes.
Each node has a maximum capacity of joins that can be
simultaneously processed, set to 4 in our experiments. All
tests are executed using the LUBM5k dataset. We use 10, 15,
20 and 25 worker nodes to see the impact of increasing the
cluster size on the execution throughput. Results for queries
LQ1, LQ3 and LQ4 are presented in Fig. 4. We present the
average query throughput in queries per second. We run the
same test twice to get the cold(CC) and warm cache(WC)
throughput. We do not implement any special caching scheme
but rely on HBase’s caching. We notice that the warm cache
execution results in 2 to 3 times higher throughput compared to
the cold cache execution which means that our system can take
advantage of caching. We observe an almost linear throughput
increase to the number of worker nodes: For example LQ1
has a throughput of 65 q/sec (a 15.4 ms per query) in a 10-
node cluster (40 executors). This is a speed-up of 40× as the
individual execution of LQ1 takes 0.6 sec. LQ1 and LQ3 have
almost the same performance due to their similar execution
cost. H2RDF+ needs 0.6 and 0.7 sec to answer LQ1 and LQ2
respectively. As for the smaller throughput of LQ4, this is due
to its increased execution cost, as it needs approximately 2 sec
to be answered. LQ4 exhibits the same scalability and warm
cache properties discussed previously.

E. Query Scalability

In this section we evaluate the scalability properties of
our distributed query processing. We use LQ9 because it
is one of the most complex queries tested, requiring three
distributed joins. We test query execution scalability using
different dataset sizes and number of worker VMs. The scal-
ability results for LQ9 are presented in Fig. 5. We test the
performance of the MapReduce join execution using different
dataset sizes using a 25-node cluster. The input and result size
of LQ9 depends on the dataset size (directly affecting LQ9’s
execution time as well). Another parameter tested here is the
region size effect on the MapReduce join execution. Large
regions exhibit lower performance for small datasets because
the number of tasks created fail to fully utilize the cluster
resources. For larger datasets, all region sizes achieve good
performance, as a result of having enough regions to fully
utilize the cluster. For smaller region sizes (64MB or 32MB)
the complexity is almost linear to the size of the input data.

Fig. 5 also shows the LQ9 query execution time as the
number of nodes increases. All tests are executed using the
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Fig. 5. Distributed query scalability for different number of universities and nodes for the LQ9

LUBM5k dataset. We vary the cluster size from 10 to 25
worker nodes and we vary the maximum region size from
32MB to 256MB. In the 32MB case, the join execution is
highly scalable, gaining great speedup by adding more nodes.
The deviations from linear speedup are mainly caused by the
fact that the number of map tasks may or may not fit well
to the cluster’s capacity. As the region size grows, we note
that adding more worker nodes does not significantly affect
the speedup due to the fact that larger region sizes incur fewer
tasks which cannot fully utilize cluster resources.

V. CONCLUSIONS

In this paper we presented H2RDF+, a fully distributed
RDF store capable of storing and querying arbitrarily large
amounts of triples. The main contribution lies in our scal-
able distributed Merge and Sort-Merge join execution and
our adaptive decisions about centralized and distributed join
execution. We have also optimized both the compression and
retrieval capabilities of our HBase indexes. H2RDF+ greatly
outperforms the compared centralized and distributed state-
of-the-art RDF storage systems in non-selective multi-join
queries, while being within a few tenths of a second to a
state-of-the-art centralized engine in selective ones. H2RDF+
is able to achieve great speedups and linear scaling in query
processing and data loading tasks as well as high-throughput
concurrent operations. These features allows H2RDF+ to scale
and handle non-selective queries in a dataset of size 2.5TB
using a 35 small-sized worker node cluster.
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VI. APPENDIX
We provide the exact SPARQL queries used in the experimental

section:

A. Yago2 Queries
YQ1: select ?x where { ?x y:livesIn y:Athens . }
YQ2: select ?y ?u where { ?y y:graduatedFrom ?u . y:Albert Einstein
y:graduatedFrom ?u . }
YQ3: select * where { ?p y:hasInternalWikipediaLinkTo
?p1 . ?p1 y:hasInternalWikipediaLinkTo ?p2 . ?p2
y:hasInternalWikipediaLinkTo ?p3 . }
YQ4: select * where { ?p y:hasInternalWikipediaLinkTo
?p1 . ?p1 y:hasExternalWikipediaLinkTo ?e1 . ?p
y:hasExternalWikipediaLinkTo ?e . }

B. LUBM Queries
We utilize the queries provided in [3]. We only change LQ9 by

removing OWL reasoning:
LQ9: select ?x ?z ?y where { ?x rdf:type ub:UndergraduateStudent
. ?z rdf:type ub:FullProfessor . ?y rdf:type ub:Course . ?x ub:advisor
?z . ?x ub:takesCourse ?y . ?z ub:teacherOf ?y }


