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ABSTRACT
The proliferation of data in RDF format has resulted in
the emergence of a plethora of specialized management sys-
tems. While the ability to adapt to the complexity of a
SPARQL query – given their inherent diversity – is cru-
cial, current approaches do not scale well when faced with
substantially complex, non-selective joins, resulting in expo-
nential growth of execution times. In this demonstration we
present H2RDF+, an RDF store that efficiently performs
distributed Merge and Sort-Merge joins using a multiple-
index scheme over HBase indexes. Through a greedy planner
that incorporates our cost-model, it adaptively commands
for either single or multi-machine query execution based on
join complexity. In this paper, we present its key scien-
tific contributions and allow participants to interact with an
H2RDF+ deployment over a Cloud infrastructure. Using
a web-based GUI we allow users to load different datasets
(both real and synthetic), apply any query (custom or prede-
fined) and monitor its execution. By allowing real-time in-
spection of cluster status, response times and committed re-
sources the audience will evaluate the validity of H2RDF+’s
claims and perform direct comparisons to two other state-
of-the-art RDF stores.

Categories and Subject Descriptors
H.2.4 [Database Management]: Distributed Databases
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1. INTRODUCTION
The unprecedented increase in the production of RDF

data is greatly attributed to the advent of the Semantic Web
in conjunction with the data deluge of modern times. This
reality triggered the emergence of specialized RDF (or triple)
stores, with a goal of achieving small query response times
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and efficient storage for arbitrarily large datasets. Conse-
quently, schemes that utilize multiple indexing [11, 16], op-
timized algorithms for RDF joins [3], pure graph data stor-
age[15, 4], etc. have been employed for this purpose. While
many research and commercial tools offer centralized RDF
data management (e.g., [5, 2]), data growth dictates dis-
tributed storage and indexing (e.g., [8, 17]).

Current distributed triple stores decentralize some or all
the stages of RDF data management. Yet, they do not flex-
ibly adjust their behavior with respect to the query in hand,
either optimizing a single join algorithm or not elastically
allocating platform resources. Yet, SPARQL queries require
execution adjustment with respect to both query input and
its complexity. Specifically, distributed approaches have not
yet taken advantage of maintaining all permutations of RDF
elements, namely spo, pso, pos, ops, osp and sop indexes.
Such a scheme can offer the following advantages: (1) All
SPARQL triple patterns can be answered efficiently using
a single index scan on the corresponding index. For exam-
ple, a triple pattern with bound subject and variable predi-
cate/object can be answered using a range scan on the spo or
the sop index. (2) Merge-joins that exploit the precomputed
orderings can be extensively employed. The existence of all
six indexes guarantees that every join between triple pat-
terns can be done using efficient merge joins. More expen-
sive join algorithms are needed only when joining unordered
intermediate results.

In this work we demonstrate H2RDF+ [13], a highly ef-
ficient, open-source1 RDF data management system that
maintains both of these properties while moving towards a
distributed and scalable environment. We summarize the
main contributions of the system as follows:

• H2RDF+ uses HBase for indexing triples. This scheme al-
lows bulk-import jobs to load and index large RDF datasets.
The distributed index is optimized by applying aggressive
compression and minimizing the storage requirements. The
latter is coupled with the use of an intermediate result
materialization that maintains groups of bindings.

• Fully scalable, distributed (MapReduce-based) versions of
the well-studied multi-way Merge and Sort-Merge join al-
gorithms are implemented.

• A join cost model and a greedy planner are used to decide,
on a per-query basis, on the order of joins and the platform
resources (central or distributed) of their execution.
Results have shown that H2RDF+ can be orders of mag-

nitude faster than the state-of-the-art centralized RDF-3X
1http://h2rdf.googlecode.com



Figure 1: Grouped intermediate results

[11] for complex, non-selective joins, while being only tenths
of a second slower in selective ones. Moreover, it proves 6–8
times faster than its previous version [14] and up to orders
of magnitude faster than an alternative MapReduce-based
scheme [9], scaling easily to 14 billion triples (2.5TB) using
a cluster of 35 VMs.

In this demonstration, we will allow participants to inter-
act with a cloud-based deployment of H2RDF+ controlled
via a web UI on three levels: (1) Data Indexing: we allow
users to choose a dataset to load and index between syn-
thetic with variable size (LUBM [6]) and real ones (Yago2
[7]). Indexing times and resulting index sizes will be avail-
able for inspection by the audience. (2) Querying: users may
write their own SPARQL query or select a predefined one
to execute. During execution, the audience can inspect the
produced plan, the progress and size of intermediate results
as well as the cluster resources used. (3) Comparison: the
same datasets will be accessible from both H2RDF [14] and
RDF-3X [11] systems, allowing their direct comparison.

2. H2RDF+ ARCHITECTURE
H2RDF+[13] materializes six different RDF indexes, one

for each possible permutation of subject-predicate-object val-
ues; these permutations are spo, pso, pos, ops, osp and sop.
These indexes are stored using HBase tables and allow the
retrieval of any simple triple pattern at minimal cost. Com-
pared to the three index approach followed in H2RDF, the
maintenance of all lexicographic RDF indexes allows for: 1)
the replacement of H2RDF’s Hash joins with efficient, scal-
able Merge joins for all joins between indexed triple queries,
2)the use of Sort-Merge joins in cases of joins between both
intermediate non-ordered results and RDF index scans. In
both cases the network overhead of shuffling data introduced
in Hash joins is minimized.

Aggregated index statistics are also materialized and can
be used to estimate triple pattern selectivity as well as join
output size and join cost. We introduce two categories of
aggregated indexes:

• With two out of the three triple elements bound, namely
sp o, ps o, po s, op s, os p and so p. For example, the
sp o table contains a set of (subject, predicate, count)
records, were the count is the number of triples that con-
tain the respective combination of subject, predicate.

• With one bound element, namely s po, p so, p os, o ps,
o sp and s op. For example, the p so index contains a set
of (predicate, count, average) key-values, where count is
the number of distinct subjects related to this predicate

Dataset Raw Size RDF-3X H2RDF H2RDF+

LUBM1k 28 GB 9 GB 25 GB 7 GB
LUBM10k 276 GB 77 GB 214 GB 62 GB
LUBM20k 549 GB 156 GB 529 GB 121 GB

Yago2 26 GB 12 GB 33 GB 10 GB

Table 1: Comparison of storage requirements

and average is the average number of objects related to
each subject.

In addition, we implement a bulk, MapReduce, loading
process that can handle the indexing of massive RDF datasets.
It consists of 4 highly scalable MapReduce jobs that:

• Translate RDF literals to integer IDs with respect to the
literal’s occurrence frequency in the dataset. For example,
a very frequent predicate will get an ID with value close
to zero. Both the String-ID and the ID-String dictionaries
are stored in separate HBase tables.

• Generate and load HBase tables for all 6 RDF triple in-
dexes along with their respective aggregated statistics.

H2RDF+ utilizes an aggressive compression scheme for
storing its indexes using: 1)variable length encoding for
writing IDs in conjunction with frequency based String-ID
mapping, 2)Google Snappy compression [1], also known as
“Zippy”compression to further compress the resulting HBase
tables. As depicted in Table 1, although storing 6 rather
than 3 indexes and more detailed statistics, H2RDF+ man-
ages to have smaller space requirements than both its previ-
ous version and RDF-3X that maintains a similar collection
of indexes and aggregated statistics.

Regarding join algorithms, H2RDF+ implements the well
known multi-way Merge join and multi-way Sort-Merge join
algorithms, utilizing scalable MapReduce jobs executed over
our distributed HBase indexes. The major contribution here
is the use of the HBase indexes to generate load balanced
total ordered partitions for the distributed execution of joins.
The notion of largest query triple scan is introduced(i.e., the
query scan that spans the most HBase regions). We use its
HBase partitioning as a total order partition for our join.
Furthermore, Merge joins are executed using Map-only job
that process locally the HBase regions of the largest scan.

Figure 2: Join on grouped intermediate results

Another, innovative feature of our join algorithms is the
use of a lazy materialization of intermediate tuples. By lazy
materialization we refer to maintaing groups of intermediate
results rather than generating all the combinations of inter-
mediate tuples. Our lazy materialization maintains groups



Yago2 LUBM10k LUBM20k LUBM100k
H2RDF+ H2RDF HadoopRDF H2RDF+ H2RDF HadoopRDF H2RDF+ H2RDF HadoopRDF H2RDF+ H2RDF

Import(min) 31 26 72 Import(min) 182 168 198 385 312 815 1154 985
YQ1(sec) 0.9 0.9 52 LQ1(sec) 0.6 0.6 152 0.8 0.8 378 0.8 0.9
YQ2(sec) 1.5 1.7 68 LQ3(sec) 0.8 0.8 231 0.9 1 449 1.1 1.1
YQ3(sec) 154 952 1832 LQ4(sec) 2.1 2.4 1289 2.3 2.4 2650 2.4 2.5
YQ4(sec) 87 728 1495 LQ2(sec) 95 635 915 131 880 1367 412 1853

LQ9(sec) 151 787 1488 292 1034 2933 890 2761

Table 2: Performance comparison of H2RDF+, H2RDF and HadoopRDF for LUBM and Yago2 datasets

Yago2 LUBM10k LUBM20k
Resources 8CPU/8GB RAM 64CPU/128GB RAM 8CPU/8GB RAM 64CPU/128GB RAM 8CPU/8GB RAM 64CPU/128GB RAM

H2RDF+ RDF-3X H2RDF+ RDF-3X H2RDF+ RDF-3X H2RDF+ RDF-3X H2RDF+ RDF-3X H2RDF+ RDF-3X
Import(min) 164 157 26 149 912 605 162 576 2075 1526 349 1398

YQ1/LQ1(sec) 0.9 0.7 0.9 0.7 0.6 0.4 0.6 0.3 0.8 0.4 0.9 0.4
YQ2/LQ4(sec) 1.5 1 1.6 0.9 2.1 0.8 2.1 0.7 2.3 0.8 2.2 0.8
YQ3/LQ2(sec) 241 3037 138 1929 373 2297 89 1277 706 Failed 119 2065
YQ4/LQ9(sec) 123 2973 79 2068 411 68 141 51 753 Failed 264 289

Table 3: Performance comparison of H2RDF+ and RDF-3X

of bindings that contain: 1) a set of the names of variables
contained in the result, 2) for each variable, a list of its bind-
ings. The bindings contained inside a group must satisfy the
property of all-to-all connection, i.e., the respective tuples
can be materialized by a nested loop over all variables.

As an example, suppose that we execute the following join:
?department ub:subOrganizationOf ?university .

?student ub:undergraduateDegreeFrom ?university .

Our sorted indexes can retrieve all departments and students
grouped per university. We exploit this grouping and instead
of generating all row oriented results depicted in Figure 1 we
only maintain a group per university. During join execution
the groups are split on demand according to the sequence
of joins. For example, lets assume that we want to use the
above results in the following join:
?department ?university ?student .

?professor ub:worksFor ?department .

During the map phase of our Sort-Merge join algorithm,
the groups are split according to the join variable binding,
creating one group for each department. In the reduce phase
groups of professors per department are retrieved from the
index and are merged with the inputs to form the output
groups depicted in Figure 2. We can observe that our lazy
materialization process is space efficient avoiding the storage
of multiple replicas of bindings.

Finally, H2RDF+ introduces a greedy planner that de-
cides on both the sequence of joins and their execution utiliz-
ing Merge joins, Sort-Merge joins and distributed or central-
ized adaptive execution. A detailed join cost mode, based
on the maintained index statistics and HBase’s index scan
performance, is also devised in order to allow for accurate
join cost estimations. Both centralized and distributed join
costs are examined by our greedy planner resulting in plans
that can be executed either using MapReduce or a single
node of the cluster. This approach provides scalable perfor-
mance for large joins and interactive responses for selective
joins avoiding the MapReduce initialization overhead.

3. EXPERIMENTS
Cluster configuration: The experimental setup consists

of an OpenStack private cluster of 6 VM containers. Each
container has a 2×6-core Intel Xeon R©CPUs at 2.67GHz, 48
GB of RAM and two 2TB disks setup with RAID 0. Worker
VMs feature a 2-virtual core processor, 4GB of RAM and
300GB of storage space, allowing the cluster to support a to-
tal of 36 VMs. The clusters we use for our evaluation consist
of 25 worker VMs plus a single VM in the role of the HDFS,

MapReduce and HBase master. Each worker VM runs 2
mappers and 2 reducers, each consuming 512MB of RAM.
We utilized Hadoop v1.1.2 and HBase v0.94.5 respectively.

Compared Systems: We compare the performance of
H2RDF+ against three state-of-the-art RDF stores: RDF-
3X [11], HadoopRDF [9] as well as the first version of our
distributed system H2RDF [14]. We evaluate the latest ver-
sion (v0.3.7) of RDF-3X [11, 12]. HadoopRDF was built
using the latest SVN rev. 158 from the project repository.

Data Sets Used: We utilize two datasets in our evalu-
ation. The Yago2 dataset [7] consists of real data gathered
from various resources such as Wikipedia, WordNet, GeoN-
ames, etc, and contains more than 120 million triples. The
LUBM dataset generator [6] creates datasets with academic
domain information. By varying LUBM’s number of univer-
sities between 1K to 100K, we create datasets ranging from
140 million (25GB) to 13.8 billion triples (2.5TB).

In order to provide a direct comparison among the differ-
ent systems, we first test the performance of H2RDF+ ver-
sus the other distributed systems. Table 2 registers the data
import times and response times for the selected SPARQL
queries using LUBM10k, LUBM20k, LUBM100k and Yago2
datasets. For a fair comparison to the centralized RDF-
3X, we run both systems using the same total amount of
resources: For RDF-3X, we use two single-server configura-
tions (a 2×Quad-Core with 8 GB RAM, 8 GB swap and 1TB
disk and a 4×16-Core with 128 GB RAM and 1TB disk);
for H2RDF+, we break the corresponding server in VMs
and use them as our cluster infrastructure. These results
are reported in Table 3.

We divide SPARQL queries in two categories: 1) selec-
tive, small queries and 2) non-selective, complex queries.
H2RDF+ performs noticeably better in large non-selective
queries: it proves almost 7× better than H2RDF and 10×
better than HadoopRDF. We also outperform RDF-3X in
most of the complex queries both when running on the small
and the large server configuration, due to RDF-3X’s mem-
ory requirements and single threaded execution engine. For
small, selective queries H2RDF+ uses centralized execution
and manages to obtain performance comparable to RDF-
3X. The difference in performance is mainly attributed to
the local disk B+Trees used by RDF-3X that offer better
seek and scan performance than our distributed HBase in-
dexes. We also note that HadoopRDF has really poor per-
formance for all selective queries due to the fact that it only
executes MapReduce joins that process all input data and
cannot take advantage of query selectivity.



To sum up, H2RDF+ manages to correctly identify selec-
tive vs. non-selective queries, performing either distributed
or centralized joins. It proves almost as efficient as RDF-3X,
with a small difference (few tenths of a second), for selective
queries. For more data-intensive queries, H2RDF+ proves
greatly superior to both central solutions and competitive
Hadoop-based schemes due to both our join strategy and
lazy intermediate result materialization.

4. DEMONSTRATION DESCRIPTION
For demonstrating our system, we use a comprehensive,

real-time GUI that attendees will utilize to interact over
dataset, query and comparison levels. The UI controls a
cloud-based H2RDF+ deployment over several virtual ma-
chines from the ∼Okeanos IaaS [10].

Dataset Specification: Participants will be given the
choice to index raw triple-sets of various types and sizes.
We provide: (i) A set of LUBM synthetic datasets that vary
from 140 million to 3 billion RDF triples (sizes ranging from
2.5 GB to 500 GB) and (ii) the Yago2 dataset consisting
of real life RDF data. Users will be given an overview of
the characteristics of each set before loading it; after this
operation finishes, statistics over the duration and resulting
index size will be available, allowing commentary on the
efficacy of the MapReduce based load job and the size of
the indexes versus compression.

Query Specification: Participants will be able to exe-
cute different SPARQL queries on the loaded datasets. Re-
gardless the dataset, they can specify their own query using
a text-area field. For synthetic datasets, a list of documented
LUBM test queries will be available, selected as to provide a
good mixture of both simple and complex structures, OWL
reasoning, and multiple types of joins. For each of the que-
ries, the exact SPARQL form, description and characteris-
tics of the query (i.e., number of triple patterns, number
of variables, number of required joins, selectivity) will be
shown. Upon proceeding with the execution, the gener-
ated execution plan will be shown to the users; real-time
progress will be available through the Hadoop JobTracker’s
site, which presents all relevant job metrics as well as the
committed cloud resources. Participants will be able to ob-
serve the intermediate outputs of each join and the final
query output from the cluster’s HDFS site. After query ex-
ecution, selected parameters and aggregate metrics such as
total execution time and output size will be displayed.

Direct Comparison: Possibly the most interesting part
of the demonstration is the direct comparison of different
RDF engines that can foster discussion among participants.
Our UI will offer interactive querying experience with two di-
rectly comparable RDF stores, RDF-3X [11] and H2RDF+’s
predecessor [14]. RDF-3X will be deployed over a central,
RAM- and storage-rich server and H2RDF over the same
cluster as our new system. Allowing users to perform iden-
tical queries over three different stores and analyzing (both
real time and aggregate) results enables direct comparisons
and, most importantly, conclusions on join, indexing and
planning algorithm efficiency. We plan to demonstrate the
superior performance of 6-ple indexing that allows efficient
Merge-Joins as well as the performance gains brought forth
by result grouping and data compression. The different
query types that best demonstrate these differences will be
pointed out to the audience, that can interactively validate
these findings.

Figure 3: H2RDF+ demo interface.
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