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Abstract

This paper presents a novel approach for the problem of generating tiled code for nested for-loops,

transformed by a tiling transformation. Tiling or supernode transformation has been widely used to

improve locality in multi-level memory hierarchies, as well as to efficiently execute loops onto parallel

architectures. However, automatic code generation for tiled loops can be a very complex compiler work,

especially when non-rectangular tile shapes and iteration space bounds are concerned. Our method

considerably enhances previous work on rewriting tiled loops, by considering parallelepiped tiles and

arbitrary iteration space shapes. In order to generate tiled code, we first enumerate all tiles containing

points within the iteration space and second sweep all points within each tile. For the first subproblem,
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we refine upon previous results concerning the computation of new loop bounds of an iteration space that

has been transformed by a non-unimodular transformation. For the second subproblem, we transform

the initial parallelepiped tile into a rectangular one, in order to generate efficient code with the aid of a

non-unimodular transformation matrix and its Hermite Normal Form (HNF). Experimental results show

that the proposed method significantly accelerates the compilation process and generates much more

efficient code.

Index Terms – Loop tiling, supernodes, non-unimodular transformations, Fourier-Motzkin elimina-

tion, code generation.

1 Introduction

Tiling or supernode partitioning has been widely used to improve locality in multi-level memory

hierarchies, as well as to efficiently execute loops onto distributed memory architectures. Supernode

partitioning of the iteration space was first proposed by Irigoin and Triolet in [21]. They introduced the

initial model of loop tiling and gave conditions for a tiling transformation to be valid. Tiles are required

to be atomic, identical, bounded and their union to span the initial iteration space. They also pointed

out the two major directions for the application of tiling transformation: data locality and coarse grain

parallelism. As far as tiling for locality is concerned, extensive theoretical and experimental research

has been conducted and, as a result, many of the proposed techniques have already been incorporated in

research and commercial compilers. In general, previous work on data locality focuses on the combina-

tion of tiling with a sequence of unimodular loop transformations (permutation, reversal, skewing etc.),

in order to better exploit cache reuse [25], [36].

When executing nested loops on parallel architectures, the key issue in loop partitioning to different
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processors is to mitigate communication overhead by efficiently controlling the computation to commu-

nication ratio. In distributed memory machines, explicit message passing incurs extra time overhead due

to message startup latencies and data transfer delays. In order to eliminate the communication overhead,

Shang [29], Hollander [10] and others, have presented methods for dividing the iteration space into in-

dependent sets of iterations, which are assigned to different processors. If the rank of the dependence

vector matrix is �� � �, the �-dimensional loop can always be transformed to have a maximum of ����

outermost DOALL loops [37]. However, in many cases, independent partitioning of the iteration space is

not feasible, thus data exchanges between processors impose additional communication delays. When

fine grain parallelism is concerned, several methods have been proposed to group together neighboring

chains of iterations [24], [30], while preserving the optimal hyperplane schedule [11], [31], [35].

When tiling to force coarse-grain parallelism, neighboring iteration points are grouped together to

build a larger computation node, which is executed by a processor. Tiles have much larger granular-

ity than single iterations, thus reducing synchronization points and alleviating overall communication

overhead. Data exchanges are grouped and performed within a single message for each neighboring

processor, before and after each atomic tile execution. In this case, scientific research focuses on deter-

mining efficient scheduling schemes [15], [16], optimal tile sizes [5], [16], [40] and optimal tile shapes.

All three above mentioned factors (scheduling scheme, tile size and tile shape) greatly affect the over-

all completion time of a tiled algorithm. For example, small tile sizes provide more parallelism, but

cause more frequent communication, while large tile sizes reduce parallelism, but also reduce the com-

munication overhead. On the other hand, overlapping scheduling schemes can significantly reduce the

overall completion time of a tiled iteration space by allowing simultaneous computation and commu-

nication phases [15], [32]. In this paper, we are mainly interested in the effect of the tile shape on the
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performance of a tiled algorithm and thus, we will proceed with a more detailed discussion of related

work.

There are two main reasons why one should choose between tile shapes. The first reason is that

different tile shapes cause different communication volumes per tile. In this case, researchers have

tried to define and calculate the communication-minimal tile shape. In their paper, Ramanujam and

Sadayappan [28] gave a linear programming formulation for the problem of finding optimal tile shapes

that minimize communication. Boulet et al. in [7] and Xue in [39] used a communication function that

has to be minimized by linear programming approaches as well. They showed that the communication-

minimal tile shape is equivalent to the shape of the algorithm’s tiling cone. More importantly, the tile

shape also greatly affects the overall completion time of an algorithm. In [9] and [18] the authors present

analytical expressions of the idle time of a processor for �-dimensional tiled spaces. This idle time is

either the time a processor is waiting for data from another processor, or the time spent by a processor

at a barrier waiting for other processors to accomplish their tasks. It is shown that the idle time depends

on the rise - a parameter that relates the shape of the tile to the shape of the iteration space. Hodzic

and Shang in [16] discussed the effect of the tile shape and size on the overall completion time of an

algorithm, taking into account the iteration space bounds. In [17], they proved that the scheduling-

optimal tile shape, i.e. the one that leads to the minimum execution time, is derived from the algorithm’s

tiling cone. Hogstedt et al. in [19], extend their work from [18] to more deeply nested loops and also

affirm that the vectors forming the basic tile shape should be taken from the surface of the tiling cone.

This means that if we properly scale � vectors taken from the surface of the tiling cone of an algorithm,

according to the bounds of the iteration space, we can simultaneously obtain scheduling-optimal and

communication-minimal tiling. Quite recently, Hogstedt et al. have proven in [20], that some more tile
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shapes may be scheduling-optimal, according to the iteration space shape.

Despite this extensive research on the effect of the tile shape on the performance of a tiled algorithm,

research or commercial parallelizing compilers do not use general parallelepiped (arbitrary) tiling [1],

[3], [8], [13], [33]. In general, the parallelizing compiler community has been pessimistic about applying

such transformations, due to the additional overhead to generate code for arbitrarily tiled iteration spaces

and, more importantly, due to the additional overhead incorporated to the generated code itself (extra ex-

pressions are needed in the loop boundaries, in order to access iteration points within the non-rectangular

tiles). However, the problem of generating code for arbitrarily tiled iteration spaces, was tackled by An-

court and Irigoin in [4]. In their paper, the problem of calculating the exact transformed loop bounds is

formulated as a large system of linear inequalities. These inequalities are formed first to calculate the

exact bounds for every tile execution and second to access all iterations inside every tile. The authors

use the Fourier-Motzkin elimination method to transform the above systems of inequalities so that they

can be used in order to calculate the bounds of a nested loop. Unfortunately, due to the fact that the

generated systems are unnecessarily large, and that the Fourier-Motzkin method is extremely complex,

the proposed method results in being quite inefficient, in terms of both compilation time and quality of

generated code. This means that the overhead to access the iteration points within non-rectangular tiles

outweighs their theoretical gain.

In this paper, we present an efficient method to generate code for tiled iteration spaces, considering

both non-rectangular tiles and non-rectangular iteration spaces. Our goal is to simplify the compilation

process and to produce as efficient code as possible. We divide the main problem into the subproblems

of enumerating the tiles of the iteration space and of sweeping the internal points of every tile (as in [4]).

For the first problem, we continue previous work concerning the computation of loop bounds which tra-
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verse an iteration space that has been transformed by a non-unimodular transformation [26], [27]. Tiling

was used as an example to compute loop bounds, but the method proposed fails to enumerate all tile ori-

gins exactly. We adjust this method to access all tiles. As far as sweeping the internal points of every tile

is concerned, we propose a novel method which uses the properties of non-unimodular transformations.

This method is based on the observation that tiles are identical and that large computational overhead

arises when non-rectangular tiles are involved. To handle this fact, we first transform the parallelepiped

(non-rectangular) tile (Tile Iteration Space - ���) into a rectangular one, then sweep the derived Trans-

formed Tile Iteration Space (����) and use the inverse transformation in order to access the original

points. The results are adjusted in order to sweep the internal points of all tiles, taking into consideration

the original iteration space bounds. We, thus, exploit the regularity of rectangle shaped tiles to produce

more efficient code. In both subproblems, the resulting systems of inequalities are eliminated using

Fourier-Motzkin elimination. Compared to the method presented by Ancourt and Irigoin in [4], our

method outperforms in terms of efficiency. Experimental results show that the procedure of generating

tiled code is greatly accelerated, since the derived systems of inequalities in our case are smaller. In

addition, the generated code is much more efficient, since it contains less expressions and avoids heavy

loop bound calculations imposed by non-rectangular tiles.

Note that the parallelization process of an arbitrarily tiled algorithm involves two separate tasks: the

generation of the sequential tiled code and the parallelization of this code. This paper deals with the first

task. Our goal is to generate efficient sequential tiled code with a low compilation time. However, since

our method also simplifies the parallelization process, we will discuss some issues of the latter task as

well. Nevertheless, parallelization details are beyond the scope of this paper. Xue in [34] presents a com-

plete approach to parallelize tiled iteration spaces (sequential tiled code generation and parallelization)
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but his method is restricted to rectangular tiles.

The rest of the paper is organized as follows: Basic terminology used throughout the paper and def-

initions from linear algebra are introduced in Section 2. We present tiling or supernode transformation

in Section 3. Our method for generating tiled code is presented in detail in Section 4. In Section 5 we

discuss some parallelization aspects of our generated code. In Section 6 we compare our method with

the one presented in [4] and present experimental results for both compilation and run times. Finally, in

Section 7 we conclude by summarizing our results.

2 Preliminaries

2.1 The Model of the Algorithms - Notation

In this paper, we consider algorithms with perfectly nested FOR-loops. That is, our algorithms are of

the form:
FOR (�� � ��; �� � ��)

FOR (�� � ��; �� � ��)

...

FOR (�� � ��; �� � ��)

���� ����

ENDFOR

...

ENDFOR

ENDFOR

where �� and �� are rational-valued parameters, �� and �� (� � �� 	 	 	 � �) are of the form: �� �


���������� 	 	 	 � ������ � 	 	 	 � ������� 	 	 	 � ������� and �� � 
����������� 	 	 	 � ������� 	 	 	 � ���� ����

	 	 	 � �������, where �� and ��� are affine functions. Therefore, we are not only dealing with rectangular

iteration spaces, but also with more general convex spaces, with the only assumption that the iteration

space is defined as the bisection of a finite number of semi-spaces of the �-dimensional space ��.
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Throughout this paper, the following notation is used: � is the set of naturals, � is the set of integers

and � is the number of nested FOR-loops of the algorithm. � � � �� is the set of indexes, or the iteration

space of an algorithm: �� � ������ 			� ������ � � 	 �� 
 �� 
 ��� � 
 � 
 ��. Each point in this

�-dimensional integer space is a distinct instantiation of the loop body. The iteration space � � can also

be described with a system of linear inequalities. An inequality of this system expresses a boundary

surface of the iteration space. Thus, �� can be equivalently defined as: �� � �� � ����� 
 ���. Matrix

� and vector�� can be easily derived from the affine functions �� and �� and vice versa. If � is a matrix,

we denote ��� the matrix element in the �-th row and �-th column and �� the �-th row or column of �,

according to the context.

2.2 Linear Algebra Concepts

We present some basic linear algebra concepts which are used in the following sections:

Definition 1 A square matrix � is unimodular if it is integral and its determinant equals to ��.

Unimodular transformations have a very useful property: their inverse transformation is integral as

well. On the other hand the inverse of a non-unimodular matrix is not integral, which causes the trans-

formed space to have “holes”. We call holes the integer points of the transformed space that have no

integer anti-image in the original space.

Definition 2 Let � be an 
  � integer matrix. We call the set ���� � ���� � �� 	 � � ��� the

lattice that is generated by the columns of �.

Consequently, we can define the holes of a non-unimodular transformation as follows: if � is a non-

unimodular transformation, we call holes the points � � � ��, such that ���� � �� ��. On the contrary,
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Figure 1. Unimodular and Non-Unimodular Transformations

we call actual points of a non-unimodular transformation � the points � � � ��, for which it holds

���� � � �� � � � � ��� �. Figure 1 shows the image of an iteration space after the application of a

unimodular and a non-unimodular transformation. Holes are depicted with white dots and actual points

with black ones.

Theorem 1 If � is a 
� integer matrix, and � is an �� unimodular matrix, then ��� � � �����.

Proof: Given in [26].

Definition 3 We say that a square, non-singular matrix � � � ���� 	 	 	 � ���� � ���� is in Column Hermite

Normal Form (HNF) iff � is lower triangular (��� �� � implies � � �) and for all � � �, � 
 ��� � ���

(the diagonal is the greatest element in the row and all entries are positive.)

Theorem 2 If � is a 
� integer matrix of full row rank, then there exists an �� unimodular matrix

� such that �� � � ���� and �� is in Hermite Normal Form.

Proof: Given in [26].

Every integer matrix with full row rank has a unique Hermite Normal Form. By Theorem 1, we

conclude that ��� � � �� �� � which means that an integer matrix of full row rank and its HNF produce

the same lattice. This property is very useful for code generation of tiled spaces.
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2.3 Fourier-Motzkin Elimination Method

The Fourier-Motzkin elimination method (FME) can be used to convert a system of linear inequalities

��� 
 �� into a form, in which the lower and upper bounds of each element �� of the vector �� is expressed

in terms of the elements ��� 	 	 	 � ���� only. This fact is very important when using a nested loop, in order

to traverse an iteration space �� defined by a system of inequalities. In this case, the bounds of index

�� of the nested loop must be expressed in terms of the � � � outer indexes only. This means that FME

method can convert a system describing a general iteration space into a form suitable for use in nested

loops.

After applying FME, the eliminated system consists of a very large number of inequalities describing

the bounds of each variable ��, but some of them are not necessary for the calculation of ��’s bounds.

The unnecessary inequalities must be eliminated to simplify the resulting system. In order to remove

the redundant inequalities, two methods have been proposed: the “Ad-Hoc simplification method” and

the “Exact simplification method”. A full description of the Fourier-Motzkin elimination method, the

Ad-Hoc simplification and the Exact simplification is presented in [6].

If the initial system of inequalities consists of � inequalities with � variables, then the complexity of

the FME algorithm can be expressed by the form: ��
 �!��"� � #� ��
�

��
�����

��
� � #���

�
��

�

� [22]. FME

is an extremely complex method, since it depends doubly exponentially on the number of loops involved.

3 Tiling (Supernode) Transformation

In a tiling transformation, the iteration space �� is partitioned into identical �-dimensional paral-

lelepiped areas (tiles or supernodes), formed by � independent families of parallel hyperplanes. Tiling

transformation is defined by the �-dimensional square matrix � . Each row vector of � is perpendic-
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ular to one family of hyperplanes forming the tiles. Dually, tiling transformation can be defined by �

linearly independent vectors, which are the sides of the tiles. Similar to matrix � , matrix $ contains the

side-vectors of a tile as column vectors. It holds $ � ���. Formally, tiling transformation is defined as

follows:

% 	 �� �� ���� %��� �

�
��� ����

� ��������

�
��� �

where ���� identifies the coordinates of the tile that iteration point � � � � is mapped to and � �

������� gives the coordinates of � within that tile relative to the tile origin. Thus, the initial �-

dimensional iteration space �� is transformed to a ��-dimensional one, consisting of the �-dimensional

space of tiles and the �-dimensional space of indexes within tiles. The following spaces are derived from

a tiling transformation � , when applied to an iteration space � �.

1. The Tile Iteration Space ������ � �� � ���� 
 ���� � ��, which contains all points that

belong to the tile starting at the axes origins.

2. The Tile Space ������ �� � ������ � ����� � � ���, which contains the images of all points

� � �� according to tiling transformation.

3. The Tile Origin Space �#����� ���� � �� � ���� � ������ �� � ���, which contains the

origins of tiles in the original space.

Following the above, it holds: �� �
�� �� and �� �

�� �#�. For simplicity reasons, we will refer to

������ as ���, ������ �� as �� and �#����� ���� as �#�. Note that all points of �� that belong

to the same tile, are mapped to the same point of � � . Note also that �#� is not necessarily a subset of

��, since there may exist tile origins which do not belong to the original iteration space � �, but some
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iterations within these tiles do belong to � �. The following example analyzes the properties of each of

the spaces defined above.

Example 1 Consider the following nested loop:
FOR (�� � �; �� � ��)

FOR (�� � �; �� � ��)

	���
 ��� � 	��� � �
 �� � �� �	��� � �
 �� � ��;

ENDFOR

ENDFOR

The corresponding iteration space �� is: �� � ����� ����� � �� � ��� � � �� � ���. Let us apply a tiling

transformation defined by matrix � �

�
���

�
� � �

��

� �
��

�
��

�
��� or, equivalently, by � �

�
��� � �

� 	

�
���, which is legal [28]

(since �� � �) and has both communication and scheduling-optimal shape ([7], [16], [17], [18], [39]), for

the specific problem. Then, as shown in Figure 2a, ��� contains the points ���� ��� �
� 
�� �
� ��� ��� 
�� ��� ���

��� ��� ��� ��� 	 	 	 � ��� ��� ��� ��� ��� ��� ��� 	�� �	� ��� �	� 	�� �	� ��� ��� ���. In addition, as shown in Figure 2c,

�� is transformed by matrix � to the Tile Space �� � ����� ��� ���� ��� ���� 
�� ���� ��� ���� ��� ���� ��� 	 	 	 �

������� ����
�� ��� ��� ������� ����
��. In the sequel, as shown by the grey dots in Figure 2b, the Tile Space

�� is transformed by matrix � to �
� � ����� 
	�� ���� ���� ��	� ��� ���� 
��� ��� ���� ��� �	�� 	 	 	 � ��	�����

�������� ���� 
��� �������� ��	� ���. �

Points belonging to the same tile with tile origin �� � �#�, satisfy the system of inequalities � 


��� � ��� � �. In order to deal with integer inequalities, we define � to be the smallest integer such

that �� is an integer matrix. Thus, we can rewrite the above system of inequalities as follows: � 


���� � ��� � � � � 
 ���� � ��� 
 �� � ��. We denote � �

�
��	 ��

���



��� and �& �

�
��	 �� � ����

��



���.

Equivalently, the above system becomes: ��� � ��� 
 �&. Note that if �� � �, ��� � ��� 
 �& is satisfied

only by points in ���.
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Figure 2. Example Spaces

Example 2 In the loop of Example 1, the set of inequalities describing the iteration space �� is:�
�����������


 �
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�
 �

� �


	










�

�
��� ��

��

	


� �

�
�����������

��

��

�

�

	










�

. Using the same tiling transformation matrix � �

�
���

�
� � �

��

� �
��

�
��

�
���, the

system of inequalities ��� � ��� � �� describing a tile is (since  � ��):�
�����������

� ��

�
 �

�� �


 ��

	










�

�
��� �� � ���

�� � ���

	


� �

�
�����������


�


�

�

�

	










�

. �
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4 Code Generation Methods

In this section, we elaborate on generating tiled code that will traverse an iteration space � � trans-

formed by a tiling transformation. We call this code sequential tiled code. By applying tiling to � �,

we obtain the Tile Space �� , the Tile Iteration Space ��� and the Tile Origin Space �#�. In Sec-

tion 3, it was shown that tiling transformation is a � � �� ��� transformation, which means that a

point � � �� is transformed into a tuple of �-dimensional factors (�	� �
), where �	 identifies the tile

that the original point belongs to (�	 � ��) and �
 identifies the coordinates of the point relevant to

the tile origin (�
 � ���). The sequential tiled code reorders the execution of indexes enforced by

the original nested loop, resulting in an execution order described by the following scheme: FOR (EV-

ERY tile IN Tile Space ��) TRAVERSE THE POINTS IN ITS INTERIOR. According to the

above, the sequential tiled code consists of a ��-dimensional nested loop. The � outermost loops tra-

verse the Tile Space �� , using indexes "�� � "
�
� � 	 	 	 � "

�
� , and the � innermost loops traverse the points

within the tile defined by "�� � "
�
� � 	 	 	 � "

�
� , using indexes � ��� �

�

�� 	 	 	 � �
�

�. We denote ��� , ��� the lower and

upper bounds of index "�� , respectively. Similarly, we denote ���, �
�

� the lower and upper bounds of index

� ��. In all cases, lower bounds '� are of the form: '� � 
�������� ����� 	 	 	� and upper bounds (� of

the form: (� � 
�������� ����� 	 	 	�, where ����, ���� are affine functions of the outermost indexes. By

calculating factors ��� � 	 	 	 � �
�
� , ��� � 	 	 	 � �

�
�, ���� 	 	 	 � �

�

� and ���� 	 	 	 � �
�

�, we can traverse the tiled iteration

space as described before.

4.1 Previous Work

The problem of generating sequential tiled code can be separated into two subproblems: traversing

the Tile Space �� and sweeping the internal points of every tile or, in our context, finding lower and
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upper bounds for the � outermost indexes "�� � "
�
� � 	 	 	 � "

�
� and finding lower and upper bounds for the

� innermost indexes � ��� �
�

�� 	 	 	 � �
�

�. Ancourt and Irigoin in [4] dealt with these subproblems, by con-

structing an appropriate set of inequalities for each case. In order to traverse the Tile Space �� , the

first system is constructed by merging the inequalities representing the original iteration space and the

inequalities representing a tile. Recall from Section 3 that a point � � � � belonging to a tile with tile

origin �� � �#�, satisfies the set of inequalities: ��� � ��� 
 �&. Since �� � $��, the preceding system

of inequalities becomes:

�
��	 ��� ��

�� ���



���
�
��	 ��

�



��� 
 �&. Recall also that a point � � �� satisfies the

system of inequalities �� 
 ��. Combining these systems, we obtain the final system of inequalities:

�
������	

� �

��� ��

�� ���



�������

�
��	 ��

�



��� 


�
��	

��

�&



��� (1)

In order to traverse the internal points of every tile, the above set of inequalities is rewritten equivalently:

�
������	

�

��

���



�������

� 


�
������	

��

�� � ���� 
 ���

��� ���



�������

� (2)

where vector �� gives the coordinates of the tile to be traversed. Ancourt and Irigoin propose the appli-

cation of FME method to the above systems in order to obtain proper formulas for the lower and upper

bounds of the ��-dimensional loop that will traverse the tiled space.
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4.2 Our Method

We will now introduce an alternative method to generate tiled code. The concept of dividing the main

problem into the subproblems of traversing the Tile Space � � and sweeping the internal points of every

tile, is preserved here as well. However, we refine complexity by applying certain transformations to

both subproblems, before constructing the final sets of inequalities and applying FME method to them.

That is, we reduce the inequalities involved in the derived systems and, consequently, reduce the FME

method steps (compilation time reduction) and the number of expressions required to calculate the loop

bounds (run time reduction).

4.2.1 Enumerating the Tiles

The subproblem of traversing the Tile Space �� has been considered by many authors as an example

of applying the non-unimodular tiling transformation to the original iteration space. More specifically,

Ramanujam in [26] and [27] applied the non-unimodular tiling transformation to the set of inequalities

�� 
 �� describing the iteration space, as follows: �� 
 ��� ������ 
 ���

�$�� 
 �� (3)

Here again, the application of FME method to the derived system of inequalities is proposed, in order to

obtain closed form formulas for tile bounds ��� � 	 	 	 � �
�
� and ��� � 	 	 	 � �

�
�.

Unfortunately, the previous approach fails to enumerate tiles exactly. This is because the system of

inequalities in (3) is satisfied by points in the Tile Space � � , whose tile origins belong to ��. However,

as stated in Section 3, there exist some points in �#� that do not belong to � �. Although these points do
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not satisfy the preceding systems of inequalities, they must be traversed as well. In Figure 2b, tiles in the

lower boundaries, such as (-3,3), (-2,1), (4,-2) and others, are not scanned by this method, because their

origins do not belong to the original iteration space � �. Consequently, a modification is required, so that

FME method can scan all tiles correctly. As shown in Figure 4, what is needed is a proper reduction of

the lower bounds and/or a proper increase of the upper bounds of our space, in order to include all tile

origins. Lemma 1 determines how much we must expand space bounds, in order to include all points of

�#�.

Lemma 1 If we apply tiling transformation $ to an iteration space � �, whose bounds are expressed by

the system of inequalities �� 
 ��, then for all tile origins �� � �#�, it holds:

��� 
 ���� (4)

where ��� is determined by the expression:

��� � �� 

� � �

�

�
���

��)� � ��
�� � � �� 	 	 	 � � (5)

where �)� is the �-th row of matrix �, � � is the %-th column of matrix $ and (�)� � ��� � 
�����)� � �� ��.

Proof: Given in Appendix

If we work with the Tile Space �� and take into account that �� � $��, we equivalently get the system

of inequalities:

�$�� 
 ��� (6)
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Figure 3. Expanding bounds to include all tile
origins

            

Figure 4. Example 3: expansion of bounds

Geometrically, the term added to each element of �� expresses a parallel shift of the corresponding

bound of the initial space. In Figure 3, we present an example of our method. Each row �)� of matrix �

expresses a vector vertical to the corresponding bound of the iteration space with its direction outwards.

The equation of this boundary surface is �)��� � ��. A parallel shift of this surface by a vector ��� is

expressed by the equation �)���� � ���� � �� � �)��� � �� 
 �)� ���. As shown in Figure 3, we shift a

boundary surface by vector �� �, iff the tile edge-vector � � forms an angle greater than ��� with vector

�)� (as the angles between the vectors �)� and � �, �)� and � �, �)� and � �, �)� and � �, �)� and � � of Figure 3),

or, equivalently, iff � � �)� � �. This fact can be expressed as follows: if the dot product of � �, one of

the columns of the matrix $ , and �)�, a row of �, is negative, then we subtract this dot product from the

18



constant ��. Equivalently, in formula (5) we add the term ��)� � ��
� to the constant �� for all vectors � �. The

multiplying factor ��


expresses the fact that a tile is a semiopen hyperparallelepiped and thus we need

not contain in the tile space the tiles which just touch the initial iteration space. Note, however, that this

expansion of bounds may include some redundant tiles, whose origins belong to the extended space, but

their internal points remain outside the original iteration space. These tiles will be accessed, but their

internal points will not be swept, as it will be shown next, thus imposing little computation overhead in

the execution of the sequential tiled code.

Example 3 We will enumerate the tiles generated by the tiling transformation described in Examples 1 and 2.

Following our approach, we should construct the system of inequalities in (6) making use of the expression

in (5). Expression (5) in our case gives ��� �

�
�� �� �	� �	�

�
and thus, the system in (6) becomes:�

�����������

� �

� 	

�� ��

�� �	

	










�

�
��� ���

���

	


� �

�
�����������

��

��

�	�

�	�

	










�

. The expansion of bounds for this example is shown in Figure 4. A rough

application of FME multiplies row 1 by 2 and adds it to row 4. Thus, we get 
���� � 	�	� � ��� � 	. Similarly,

we get ��� � ��. Consequently, a loop that enumerates the origins of tiles in our case has the form:

FOR (��� � �	; ��� � 
)

FOR (��� �max���������
�

�

�
�
 �

��������
�

�
��; ��� �min�� �����

�

�

�
�
 �

������
�

�
��)

� � �

ENDFOR

ENDFOR

Note that tiles �	���� and ���� �� are redundant (Fig. 4). �
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4.2.2 Scanning the points within a tile

As far as scanning the internal points of a tile is concerned, we present a new method based on the

use of a non-unimodular tranformation. Our goal is to traverse the ��� and then slide the points of

��� properly, so as to scan all points of ��. In order to achieve this, we transform the ��� to a

rectangular space, called the Transformed Tile Iteration Space (����). We traverse the ���� with

an �-dimensional nested loop and then transform the indexes of the loop so as to return to the proper

points of the ���. In other words, we are searching for a transformation pair ($ �, � �): ����
� �

�� ���

and ���
��

�� ���� (Fig. 5). Intuitively, we demand $ � to be parallel to tile sides, that is, the column

vectors of $ � to be parallel to the column vectors of $ . This is equivalent to the row vectors of � �

being parallel to the row vectors of � . In addition to this, we demand the lattice of � � to be an integer

space for loop indexes to be able to traverse it. Formally, we must find an �-dimensional transformation

� � 	 � � � * � , where * is an �  � diagonal matrix and ��� �� � ��. The following Lemma proves

that the second requirement is satisfied if and only if � � is integral.
            

Figure 5. Traverse the ��� with a non-
unimodular transformation

            

Figure 6. Steps and initial offsets in ���� de-
rived from matrix �� �

20



Lemma 2 � � � �� � �� �� � �� iff A is integral.

Proof: Given in Appendix

Let us construct * in the following way: Every diagonal element +�� is the smallest integer such that

+���� is integral, where �� is the �-th row of matrix � . Thus, both requirements for � � are satisfied. It

is obvious that � � is a non-unimodular transformation. This means that the Transformed Tile Iteration

Space contains holes. In Figure 5, the holes in the ���� are depicted with white dots, while the actual

points are depicted with black ones. So, in order to traverse the ���, we have to scan all actual points of

the ���� and then transform them back using matrix $ �. We can apply any of the methods presented in

[26], [27], [38], [25], [12] to traverse the ����. However, we will avoid the application of FME method

by taking advantage of the tile shape regularity.

We use an �-dimensional nested loop with iterations indexed by � ��� ��� �
�

�� 	 	 	 � �
�

��, in order to traverse

the actual points of the ����. The bounds of the indexes � �� are easily determined: it holds � 


� �� 
 +�� � �. However, the increment step ,� of an index � �� is not necessarily 1. In addition to this,

if index � �� is incremented by ,�, all indexes � ����� 	 	 	 � �
�

� should be initialized at certain offset values

�����	�� 	 	 	 � ���. Suppose that for a certain index vector � �, it holds $ �� � � ��. The first question is

how much to increment the innermost index � �� so that the next swept point is also integral. Formally,

we search the minimum ,� � � such that $ �

�
� �� � �� 	 	 	 � �� 
 ,�

��
� ��. After determining

,�, the next step is to calculate the increment step of index � ���� so that the next swept point is also

integral. In this case, it is possible that index � �� should also be incremented by an offset ������	 	

� 
 ������	 � ,�. In the general case of index � �� we need to determine ,�� �����	�� 	 	 	 � ��� such

that: $ �

�
� �� 	 	 	 � �� 
 ,� � ���� 
 �����	� 	 	 	 � �� 
 ���

��
� ��. Every index � �� has �� � different

incremental offsets ���, depending on each of the increment steps ,� of the � � � outer indexes � ��.
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These offsets are ���� 	 	 	 � ������	. The following Lemma proves that increment steps ,� and offsets ���,

(� � � 	 	 	 � and � � � 	 	 	 � � �), are directly obtained from the Hermite Normal Form of matrix � �,

denoted �� �.

Lemma 3 If �� � is the column HNF of � � and � ��� ��� �
�

�� 	 	 	 � �
�

�� is the index vector used to traverse the

actual points of ��� ��, then the increment step (stride) for index � �� is ,� � ����� and the incremental

offsets are ��� � �����, (� � � 	 	 	 � and � � � 	 	 	 � � �).

Proof: Given in Appendix

According to the above analysis, the point that will be traversed using the next instantiation of indexes

is calculated from the current instantiation, since steps and incremental offsets are added to the current

indexes. Special care is taken so that every time the index vector � � � �� ��� 	 	 	 � �
�

�� is to be modified, the

new index vector � � is calculated as a sum of current � � and a multiple of a column-vector of �� �. Thus,

assuming that the current instantiation � � � ��� ��, we ensure that the next point to be traversed remains

in ��� ��.

Theorem 3 The following �-dimensional nested loop traverses all points � � � ����
FOR(��� � �� 	 	 	 � ��� � �; ��� � ��� � 
; ��� � ������ 	 	 	 � ��� � �����)

FOR(��� � �
����
�����

� 	 ������ 	 	 	 � ��� � �
����
�����

� 	 �����; ��� � ��� � 
; ��� � ������ 	 	 	 � ��� � �����)
	 	 	

FOR(��� � � ��
�

�

�����
� 	 �����; ��� � ��� � 
; ��� � �����)

	 	 	

ENDFOR
	 	 	

ENDFOR
ENDFOR

Proof: It can be easily derived from Lemmas 2 and 3.

We now need to adjust the above loop, which sweeps all points in ����, in order to traverse the

internal points of any tile in �� . If � � � ���� is the point that is derived from the indexes of the
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former loop and �� � �� is the tile, whose internal points � � � � we want to traverse, it will hold:

� � $�� 
 $ �� � � �� 
 $ �� �, �� � �#�, where �� � $�� is the tile origin, and $ �� � � ��� is the

corresponding to � � point in ���. Special attention also needs to be paid so that the points traversed do

not overcome the original space boundaries. As we have mentioned before, a point � � � � satisfies the

following set of inequalities: �� 
 ��. Replacing � by the above equation we have: ���� 
 $ �� �� 
 ���

�$ �� � 
 ��� ��� (7)

By applying FME method to the preceding set of inequalities, we obtain proper expressions for � �, so

that we do not cross the original space boundaries. In this way, the problem of redundant tiles that arose

in the previous section is also faced, since no computation is performed in these tiles.

Example 4 Let us consider the same algorithm as in the previous examples. We will now sweep the internal

points of a tile. If we follow our method, we have the following: �� �

�
��� � �


�
 �

�
��� and � �

�
��� 
� �

� ��

�
���. Ac-

cordingly, � � �

�
���

�
�

�
�

�
�

�
�

�
���. The Hermite Normal Form of matrix�� is�� � �

�
��� 
 �

� �

�
��� �

�
��� � �


�
 �

�
���
�
��� 
 



 �

�
���

and thus, as shown in Figure 6, �� � ����� � 
, �� � ����� � �, ��� � ����� � �. Consequently, the code that

traverses the indexes inside every internal tile, according to Theorem 3, is:�
���
���

�
�

�
 	
� 


��
���
���

�
;

FOR (��� � �
 ��� � �; ��� � �; ���� � �
 ���� � �)

FOR (���� � �
���

�

�
� � �; ��� � ��; ���� � �)�

��
��

�
�

�
���
���

�
�

�
�

�

�

�
�

�

�

�

��
���
���

�
;

	���
 ��� � 	��� � �
 �� � �� �	��� � �
 �� � ��;

ENDFOR

ENDFOR

In order to exactly scan the internal of boundary tiles, we construct matrix ���������� �
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�
�����������

�
�

�
� �� 
 �

�
�

�
� �� � 


��
� ��

� � �
 �

��
� ��

� � � �


	










�

. FME method on this matrix gives:

�
��������������������


 � �	 � �


�
�

�
� �� 
 �

�
�

�
� �� � 


�
 � �� �� 


��
� ��

� � �
 �

��
� ��

� � � �


	



















�

. Conse-

quently, the code that traverses the indexes inside tiles, which cut the iteration space bounds, is:�
���
���

�
�

�
 	
� 


��
���
���

�
;

��� �max��
���� ���� � ����;

��� �min�� /* ��-1 */
 �
� ���� � ����;

FOR (��� � ���
 �
�

� � ��� � �; ��� � ���; ���� � �
 ���� � �)

��� �max��
����� � ���� 
 �
���

�
�����
�

��;

��� �min��� /* ��-1 */
����� � ���� � ���
 �
���

�
�����	���

�
��;

FOR (���� � �
������

�

�
� � �; ��� � ���; ���� � �)�

��
��

�
�

�
���
���

�
�

�
�

�

�

�
�

�

�

�

��
���
���

�
;

	���
 ��� � 	��� � �
 �� � �� �	��� � �
 �� � ��;

ENDFOR

ENDFOR �

5 Parallelization Aspects

In this section, we briefly refer to some parallelization aspects of the sequential tiled code. Recall

that the parallelization of an arbitrarily tiled algorithm involves two separate tasks: first, the generation

of the sequential tiled code and, second, the parallelization of this code. This paper focuses on the

first task. Parallelization, in the sequel, can be separated in sub-tasks such as iteration distribution, data

distribution and message-passing code generation. Our approach of accessing the internal of the tiles

with the Hermite Normal Form of matrix � � can also provide significant benefits to the parallelization

process, such as better data placement and thus, more efficient memory usage and ease of array data
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addressing schemes.

When executing an algorithm on a distributed memory machine, the original data space of the algo-

rithm is distributed to the local memories of the processing nodes. The local data space of each node

is in general a non-rectangular subset of the original data space, even if rectangular tiling is applied

[2]. However, applying the proposed transformations, each processor can iterate over a rectangular lo-

cal iteration space (TTIS) and access rectangular data spaces as well. In this way, each processor can

allocate exactly the required amount of memory. Rectangular data spaces also allow for straightforward

addressing schemes of array elements and thus a direct way of sweeping data by the generated code.

Another very important benefit in parallelization is the convenient determination of the communication

sets. Each communication set contains the communication points, i.e. the points that are written in the

local memory of a processor and are needed by another. The communication points have the following

property: if we add one dependence vector to them, then the resulting point lies in the exterior of the tile.

Figure 7 shows the communication points and sets when determined in the TIS and in the TTIS. -� and

-� are the dependences of the original algorithm, while -�� and -�� are the transformed dependences in the

����. It is obvious that, when working with the rectangular ����, the communication sets are much

more easily determined since they are rectangular as well. Details about the parallelization process only

(iteration distribution, data distribution, message-passing code generation etc.) can be found in [14].

6 Comparison – Experimental Results

We have implemented both our method (in the sequel denoted as RI - Reduced Inequalities) and the

one described in [4] by Ancourt and Irigoin (denoted as AI), as a software tool which automatically

generates tiled C code using any tiling transformation $ . In this section, we compare AI and RI methods
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Figure 7. Determining Communication Sets in the TIS and TTIS

both in terms of compilation time and generated code efficiency. We generated several random � � .

and ��. problems and measured the following: compilation time, row operations performed by FME

and run time of the generated code. In the sequel, we applied both AI and RI methods to three real

applications: SOR, Jacobi and ADI integration. We also applied the inequalities of AI method to the

Omega calculator [23] and generated code for all problems. We then measured the compilation time and

run time obtained by Omega (the results are denoted as AI-Omega) and compared them with the ones

obtained by AI (using our tool) and RI. Table 1 shows the iteration spaces used as examples in ��. and

��. problems. We applied several tiling transformations, in which the non-zero elements of the tiling

matrices were randomly generated. In � � . spaces we applied three different tiling transformations

($�� $�� $�) varying from the diagonal matrix $� to more complex ones. In � � . spaces we applied

seven different tiling transformations ($�� 	 	 	 � $��), again here starting from the diagonal $� and adding

non-zero elements ($�� contains no zero element). We performed our experiments on a PIII @ 800MHz

processor with 128MB of RAM. The operating system is Linux with kernel 2.4.18. The generated

tiled code was compiled using gcc v.2.95.4 with the -O3 optimization flag. We also experimented with
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lower optimization levels, where the execution times were slower, but the relative results for all methods

remained the same.

Table 1. Example Iteration Spaces
�� �� ��

lower upper lower upper lower upper
bound bound bound bound bound bound # of iterations

Space1 ����� 	��� ����� 	��� - - 	
�
���
Space2 ����� 	��� ����� 	��� � ��� - - ��
����
Space3 �	��� 	��� �	���� ��� 	��� � ��� - - ���
����
Space4 � ��� � ��� � ��� 	������
Space5 � ��� � ��� � �� � ��� ��������
Space6 � ��� ��� ��� � �� � ��� ���
	����
Space7 ��� �	� ���� �� �	� � �� ��� �	� � ��� ����	���
Space8 � ��� ��� ��� � �� �� �� � ��� �������

Space9 ��� �	� ���� �� �	� � �� ���� �� �	� � �� � ��� ��������
Space10 � �� ��� �� � �� ��� � ��� �� � �� � ��� ���		�

6.1 Row Operations - Compilation Time

Tables 2,3 summarize the results (row operations and compilation time) from the compilations of all

iteration spaces tiled with all candidate tiling matrices. We present here the number of row operations

and compilation times of one matrix ($� for ��.& and $
 for ��.&) for all iteration spaces and the

average values of each matrix for all iteration spaces.

6.2 Run Time

In order to evaluate the run time overhead due to tiling, we executed all tiled codes of the previous

problems and measured their run time. We also executed the original untiled serial code for each prob-

lem. We define the Tiling Overhead Factor - TOF as the fraction of the run time of the sequential tiled

code to the run time of the untiled code: �#/ � Run time of Sequential Tiled Code
Run time of Untiled Code . Note that, the loop body in

each case is a simple array assignment statement and, thus, the run time measured is dominated by the
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Table 2. FME Row Operations and Compilation
Time (
&) for 2D Algorithms

AI RI AI-Omega AI RI
Row Operations (��) Compilation Time (��)
Space1 �� �� ���� ���
 ����
Space2 �� �� ���� ���
 ����
Space3 �	 �� ����
 ���� ���

Avg. Row Operations Avg. Compilation Time
�� �� �� �
�

 ���� ���
�� �� �� ����� ���
 ����
�� �� �� ���� ��� ���

Table 3. FME Row Operations and Compilation
Time (
&) for 3D Algorithms

AI RI AI-Omega AI RI
Row Operations (�
) Compilation Time (�
)
Space4 �	 �
 ������ ���� ��	�
Space5 ��
 �	 ����
 �� ����
Space6 ��
 	� �
 �

��� 	��	 ����
Space7 �	�� �
 �����
 	���
 ���	
Space8 ���� 	� �
 ������ ����� ���
Space9 ��� �
 ����	� ��� ����
Space10 	�� 	� ����� ���
 ���

Avg. Row Operations Avg. Compilation Time
�� 

 �� ���
� ���� ��	�
�� ��� �� ��� ���
 ��		
�� �� �
 ����	 ��� ����
�� �� �
 
�	�� ���� ���	
�� ��
� � �
 �����	 �
 �	�	 ����
�� ��� �� �
 ����� �
���	 ����
��	 ���� 	� �
 �����
 ��
 ��
��� ���

time to compute the loop bounds. Since the array size was small (����) and the tile sizes were not cho-

sen to be optimal for cache locality, the sequential tiled code does not present any improvement due to

the exploitation of the memory hierarchy. Thus, TOF indicates the overhead imposed by the evaluation

of the new loop bounds, due to tiling. If TOF is too large, it will aggravate the speedup obtained when

we parallelize nested FOR-loops using tiling. Table 4 summarizes the tiling overhead factors. Again

here we present the TOFs of $� and $
 applied to all iteration spaces and the average TOFs of all $&

across all iteration spaces. Figure 8 shows the TOF of � � . problems as a function of the number of

non-zero elements in tiling matrix $ .

6.3 Real Applications

In our last set of experiments, we applied AI and RI methods to tile three real applications: SOR,

Jacobi, and ADI integration. For the first two problems, there is a skewed and an unskewed version, and
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Table 4. Tiling Overhead Factors (TOF) for ��. and ��. Problems
AI-Omega AI RI AI-Omega AI RI

TOF (2D) (��) Avg. TOF (2D)
Space1 ��� 	��� ��� �� ��
� ���� ����
Space2 ��� 	�� ��� �� �� 	��
 ���
Space3 ��	� ��� ��
� �� 
��� �	� ����

TOF (3D) (�
) Avg. TOF (3D)
Space4 ����� ��
 	�� �� ���� ��� ����
Space5 ���� ����� ���	 �� 	�� ��		 ��


Space6 ���� ����� ���� �� ���� ��� 	��
Space7 ���� ���	 	�
� �� ����� ��	� ����
Space8 ����� 
��� 	�� �� ����	 ���	 ���
Space9 ���
� 
��� 	�
	 �� ����	 
��
 ����
Space10 ����� ���
 �
	 ��	 ���� ����� ���
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Figure 8. Avg. Tiling Overhead Factors for ��.
problems

            

Figure 9. Tiling Overhead Factors for real appli-
cations

for each version there are four (communication and scheduling) optimal matrices as described in [17]

and [39]. Table 5 summarizes the row operations, compilation times and TOFs for each case. Figure 9

shows the TOFs obtained by each method, in each case.

6.4 Overall Evaluation Comments

As far as compilation time is concerned, RI method clearly outperforms AI method. This is due to

the fact that RI method feeds FME with the system in (6), which consists of �� inequalities with �
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Table 5. Performance for Real Applications
Row Operations Compilation Time (��) TOF
AI RI AI-Omega AI RI AI-Omega AI RI

�� �� �� ����� ���� ��	� ��	� ���� ����
SOR �� ��� �� ����� ���� ��	� ���� ���� ����

�� ��
 �� 	���� ���� ��	� ���� ��� ����
�� �� 	� ����	 ���� ��� ��
� ���
 ����

�� �� �� 	���� ���� ��	� ���� ���� ���
SOR �� ��� �� 	��� ���� ��	� ��� ���� ���

skewed �� ��
 �� ���� ���� ��	� ���� ���� ����
�� �� 	� ����� ���� ���� ���� ��
 ���	

�� 	� �
 �	��� ��� ��	 ���
 ���� ����
Jacobi �� 	� �
 �	��� ��� ��	� ���� ���� ���

�� 
�� �
 ���� 
�
 ��	� ��� ���� ���
�� ���� 	 �
 ������ ��	�

 ���� ���
 ���� ����

�� 	� �
 ����

� 	��� ��	
 ���� ��

 ��		
Jacobi �� 	� �
 �	
��� 	��
 ��	� ���
 ��
� ��	
skewed �� 
�� �
 �����	 
��� ��	
 ���� ��
� ��	�

�� �� �
 ��
�
� ���� ��	� ���� ��

 ��	�

ADI �� �
� �
 	��	� ��
� ��	 ��	 ��	� ����

variables, while AI method feeds FME with the system in (1), which consists of � inequalities with

�� variables. Recall that FME is a doubly exponential algorithm and thus the reduction in its input size

imposed by our method causes significant reduction in the method’s execution steps, as clearly seen by

the number of row operations. Note also that the exact simplification method of FME was not applied

in the presented experiments, since the gain in run time by the application of the method was inadequate

to justify the vast increase in compilation times, especially in the case of AI method (�� average and

��� maximum gain in run time). In particular, while RI compilation times remained in the order of

milliseconds when using exact simplification, AI compilation times increased dramatically (reached the

order of an hour). This means that we can practically apply exact simplification to RI, in order to further

improve the efficiency of the generated code.

Despite the reduction in compilation time imposed by RI, it seems that both AI and AI-Omega perform

well in ��. and ��. problems (compilation times are less than one second). However, in problems of
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larger dimensions, both AI and AI-Omega present several problems. We executed a number of randomly

generated �. algorithms and observed that, at first, the compilation time of AI becomes impractical

(several hours or even days). More importantly, AI failed to generate code for almost half of the problems

due to lack of memory. Note that FME is also doubly exponential in space, so in several �. problems

even 1GB of virtual memory was not sufficient to cover the needs of the method. On the other hand,

AI-Omega also faced some problems with memory space (to a smaller extent than AI) but here again, in

almost half of the problems, the system rose an overflow exception. Apparently, after a large number of

row operations in  � . algorithms, some coefficients exceeded the system’s MAXINT. In all cases RI

method succeeded in generating code, within some seconds in the worst case.

As far as run time is concerned, RI also exhibits a significant improvement in performance in all

problems. In particular, as shown in Figure 8, as the number of non-zero elements in matrix $ increases,

the improvement of RI method becomes much more obvious. This means that RI method performs very

well in complex problems where the tiling matrices contain many non-zero elements and the iteration

spaces are non-rectangular. In addition, as shown in Figure 9, RI’s performance is nearly optimal in

simpler algorithms such as SOR, Jacobi and ADI, since the TOF in these cases is very close to one.

Thus, RI performs very well in easy problems and sustains a remarkably good performance even when

the tiling transformations and the shape of the iteration spaces become increasingly complex.

The improvement in the quality of the generated code caused by RI, is due to the fact that, although

the code to enumerate the tiles is essentially similar in AI and RI, the code to traverse the internal points

of the tiles is completely different. Our tool makes a distinction between boundary and internal tiles and

generates different code to scan the internal points for both AI and RI (as in Example 4). In the case of

boundary tiles, RI method results in fewer inequalities for the bounds of the Tile Space. Consequently,
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fewer bound calculations are executed during run time. In the case of internal tiles, which are the vast

majority in most problems, the code of RI consists of a loop with constant bounds (� 
 � �� 
 +�� � � for

� � �� 	 	 	 � �), while the code of AI includes a loop whose bounds are derived from the application of

FME to the system

�
��	 ��

���



��� ��� ��� 


�
��	 �� � ����

��



���. It is clear that the calculation of loop bounds

in the first case is much more efficient. Finally, note that the enumeration of some redundant tiles does

not impose any significant overhead, since the number of redundant tiles is negligible. The same holds

for the non-unimodular transformation used to access the internal points of the tiles. In this case, the

additional operations due to the transformation are simple integer multiplications, while operations on

extra variables are integer additions and assignment statements which are all efficiently executed by

modern processors and optimized by any back-end compiler like gcc.

Summarizing, the compilation time reduction is due to the method used to enumerate the tiles of the

Tile Space, while the run time reduction is mainly due to the transformation of a non-rectangular tile to

a rectangular one.

7 Conclusions

In this paper, we proposed a novel approach for the problem of generating code for tiled nested loops.

Our method is applied to general parallelepiped tiles and non-rectangular space boundaries as well. In

order to generate code efficiently, we divided the original problem into the subproblems of enumerating

the tiles and sweeping the points inside every tile. In the first case, we extended previous work on

non-unimodular transformations in order to precisely traverse all tile origins. In the second case, we

proposed the use of a non-unimodular transformation in order to transform the tile iteration space into a

hyper-rectangle. Experimental results show that our method outperforms previous work in terms of both
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compile and run times, since it constructs smaller systems of inequalities and traverses the points within

non-rectangular tiles as if they were rectangular.

Appendix

Proof of Lemma 1: We suppose that the point � 
 �� belongs to the tile with origin ��. Then, � can be expressed

as the sum of �� and a linear combination of the column-vectors of the tiling matrix � : � � �� 
��

��� �����. In

addition, as referred in Section 3, the following equality holds:�� � ��� � ��� � �� � 
�. The �-th row of this

inequality can be rewritten as follows:� � ����� � ��� �
��


, where ��� is the �-th row-vector of matrix � � ���.

Therefore: � � ���
��

��� ����� �
��


. As � � ��� it holds that ������ � 
 and ������ � � if � �� �. Consequently, the

last form can be rewritten as follows: � � �� �
��


for all � � 
� 	 	 	 � �.

For each � 
 �� the system of inequalities �� � �� holds. The �-th row of this system can be written as

follows: ����� � ��. We can rewrite the last inequality in terms of the corresponding tile origin as follows:

������� 
��

��� ������ � �� �
��� ��� � �� � ����

��
��� ������

� ��� ��� � �� �

��
���

��� ��� ���� (8)

In addition, as we proved above, it holds � � �� �
��


for all � � 
� 	 	 	 � �. If multiplied by ��� ��� this inequality

gives:

a) If ����� � �: �� ��� ��� � �

b) If ������ � �: �� ��� ��� �
��

������

According to the definitions of the symbol ���� ����� � ����� ������� ��, the previous inequalities can in every

case be rewritten as follows: �� ������ � ���


� ��� ����
� � ��� ������ �

��


� ��� ����
�. If added for � � 
� 	 	 	 � �, this

inequality gives: �
��

��� ��
��� ��� �

��


��
����

��� ����
�.
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Therefore, from the last form and the inequality (8), we conclude that ��� ��� � ��  ��


��
����

��� ����
�. Thus,

for each tile with origin ��, which has at least one point in the initial iteration space, it holds that ��� � ���, where

the vector ��� is constructed so as its �-th element is given by the form: ��� � �� 
��


��
����

�������
�. �

Proof of Lemma 2: If A is integral it is clear that �� 
 ���� 
 ��. Suppose that �� 
 ���� 
 ��. We shall

prove that  is integral. Without lack of generality we select � � �!�, where �!� is the �-th unitary vector, �!� �

�!��� 	 	 	 � !���, !�� � 
� !�� � �� � �� �. Then, according to the above,  �!� � �
��

��� ���!�� �
��

��� ���!�� � 	 	 	 �

��
��� ���!�� �

� � ����� ���� 	 	 	 � ����
� 
 ��. This holds for all �!�� � � 
 	 	 	 �, thus  is integral. �

Proof of Lemma 3: It holds ���� � ��� ��. Thus, �� 
 �� �� and the columns of �� � belong to ����.

Suppose �� 
 ��"�� with the following properties: �� � � for � � � and � � �� � ����� for � � � � �. It suffices

to prove that �� "
 ���� ���� � �� "
 �� ��. Suppose that �� 
 ����, which means that �� 
 �� � �� �� � ��. �� � is

a lower triangular non-negative matrix and thus it holds: �� � ������� � � � �� � �. Similarly, �� � � for � � �.

In the sequel, it holds: �� � �������. According to the above, it holds: � � �� � ������� � ����� � � � �� � 
.

In addition, � � ���� � �������	���  �������	����	���� � �������	� . Since �������	����	 # �������	� � ���� � �.

Similarly, �� � � for � # �  
. Consequently either �� � ��, or �� is the � � $� column of �� �, which is a

contradiction. �
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