
1

Fast and Cost-Effective Online Load-Balancing
in Distributed Range-Queriable Systems

Ioannis Konstantinou, Dimitrios Tsoumakos and Nectarios Koziris, Member, IEEE

Abstract—Distributed systems such as Peer-to-Peer overlays have been shown to efficiently support the processing of range queries
over large numbers of participating hosts. In such systems, uneven load allocation has to be effectively tackled in order to minimize
overloaded peers and optimize their performance. In this work, we detect the two basic methodologies used to achieve load-balancing:
Iterative key re-distribution between neighbors and node migration. We identify these two key mechanisms and describe their relative
advantages and disadvantages. Based on this analysis, we propose NIXMIG, a hybrid method that adaptively utilizes these two
extremes to achieve both fast and cost-effective load-balancing in distributed systems that support range queries. We theoretically
prove its convergence and as a case study, we offer an implementation on top of a Skip Graph, where we thoroughly validate our
findings in a variety of static, dynamic and realistic workloads. We compare NIXMIG with an existing load balancing algorithm proposed
by Karger and Ruhl [1] and our experimental analysis shows that, NIXMIG can be as much as three times faster, requiring only one
sixth and one third of message and item exchanges respectively to bring the system to a balanced state.

Index Terms—Peer to peer systems, load balancing, range queries.

�

1 INTRODUCTION

Data skew is a well-documented concern for a variety of

applications. It has been widely observed that most Internet-

scale applications, including P2P ones, exhibit highly skewed

workloads (e.g., [2], [3], etc). Failing or departing nodes

further reduce the availability of various content. Conse-

quently, resources become scarce, servers get overloaded and

throughput can diminish due to high workloads that, in many

cases, can by themselves cause denial of service [4].

One way to handle hotspots and balance load is by applying

hash functions that transform skewed data access patterns to

uniform distributions. Nevertheless, this transformation comes

at the cost of destroying content locality, and thus cannot be

used in situations where objects need to placed in an order-

preserving way. Distributed data-structures that support range-

queries is such an example: The keys are partitioned in the

network nodes so that a natural order is preserved and each

range query is efficiently handled by a small number of peers.

The interest in such structures is increasing, as they can be

very useful in a variety of situations: distributed databases [5],

on-line games [6], web servers [7], data-warehousing [8], etc.

Another orthogonal way to deal with data skew is the

replication of popular items in numerous nodes. However, the

content locality constraint minimizes available replica candi-

dates (allowing, for instance, only few-hop away neighbors),

something that makes balancing even more difficult. What is

more, replication not only needs to change the underlying

routing protocol to handle multiple replica locations during

item searches and insertions, but it must also deal with

consistency issues during object updates.

• I. Konstantinou, D. Tsoumakos and N. Koziris are with the Department
of Electrical and Computer Engineering, National Technical University of
Athens, Greece.
E-mail: {ikons, dtsouma, nkoziris}@cslab.ece.ntua.gr

In such cases, load balancing methods that re-distribute

items between nodes are an appealing solution. The highly

dynamic and large scale nature of these distributed data

structures, where it is difficult for a single node to have a total

network workload overview, poses two basic requirements: on-

line functionality (i.e., the property to make correct decisions

only with partial, local workload knowledge) and workload

adaptivity (i.e., the ability to quickly respond to workload

changes).

In current bibliography, a variety of methods exists focusing

on achieving efficient load balancing for such structures,

whether they utilize the notion of “virtual servers” [9]–[14]

or not [1], [14]–[21]. Yet, they can be categorized in two

general strategies: Node Migration and Neighbor Item Ex-
change. These techniques represent two different approaches

to handling the problem: Node Migration utilizes underloaded

peers by placing them in overloaded areas of the network

(see Figure 1, where the height of the bars shows the load

of each node, while their width reflects the number of keys

served). The newly arriving peer takes up part of the load

of its new neighbors. Neighbor Item Exchange balances load

through iterative item exchanges between neighboring nodes

(see Figure 2). The majority of proposed approaches utilize

a version of these two schemes in order to finally balance

load among peers each responsible for a given range of the

data. While they both achieve their goal, their speed and cost

greatly vary, making a method that utilizes only one of them

inefficient for all cases.

Our contribution1 can be summarized in the following:

• We formally identify these two different methodologies

that, iteratively applied, perform load balancing on dis-

tributed range-partitioned data structures. We describe

1. A preliminary version of this work was presented in the P2P’09
conference [22]. In this paper we elaborate on NIXMIG, proving speed and
convergence, we present new experimental results including a comparison
with another algorithm [1] and a detailed literature overview.

Digital Object Indentifier 10.1109/TPDS.2010.200 1045-9219/10/$26.00 © 2010 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

lo
ad

lo
ad

A B A

keys

DC BD C

keys

Fig. 1. Node Migration example. Node D is placed
between nodes A and B and shares part of their load.

A B C D BA C D
keys keys

lo
ad

lo
ad

Fig. 2. Neighbor Item Exchange example. Iterative key
exchanges between (A,B), (B,C) and (C,D) node pairs
produce a balanced load.

their mechanisms and analyze their performance in terms

of completion time and communication cost. An impor-

tant result of our work is the observation that, through

mere key exchanges the achieved result can be highly

delayed and the number of exchanged items can be very

large, whereas using only node migrations the cost of

updating the structure is considerably increased.

• Based on this analysis, we describe a hybrid method

that utilizes both item exchange and node migration

in order to minimize overloaded peers and balance the

load distribution among them. This method manages to

adjust the use of migrating nodes with the neighbor

item exchange operations: Load moves in a “wave-

like” fashion from more to less loaded regions of the

structure adaptively, using our version of the Neighbor

Item Exchange mechanism. When we locally identify

highly overloaded regions, we activate Node Migration.

We also present smart, “skew aware” remote underloaded

node location and placement mechanisms that further

decrease NIXMIG’s bandwidth consumption. We theoret-

ically study the algorithm’s convergence existence and

speed along with the preconditions that need to hold for

the system to reach an equilibrium.

• We present a Skip Graph [23] implementation on top of

which we apply and compare the hybrid versus simple

node migrations, neighbor item exchanges and another

load balancing algorithm proposed by Karger and Ruhl

[1]. We measure and compare their behavior in a variety

of skewed, dynamic and realistic workloads. Our results

validate the analysis of the previous sections and show

that our method balances at low cost (requires only

one sixth and one third of message and item exchanges

respectively compared to [1]) and high convergence rate

(it is three times faster than [1]), adapts to changing

workloads and is highly customizable.

The remainder of this paper is organized as follows: Section

2 gives the reader the basic notation and formulation of our

problem. Section 3 describes and analyzes the two different

primitive mechanisms for load balancing, while in Section 4

we present and theoretically analyze our hybrid method. Our

experimental results are detailed in Section 5, while Related

Work and the Conclusions Section conclude our work.

2 NOTATION AND PROBLEM SETUP

We consider the indexing and storing of M keys (1, . . . ,M)
in N nodes (1, . . . , N), where N�M. We assume that a key

represents an object or item, hence we shall use these terms

interchangeably. We consider that M keys are divided along N

partitions (ranges) with boundaries r1 <= r2 <= . . . <= rN
(obviously, ri ∈ [1,M], ∀i ∈ [1, N]). Each node Ni stores and

indexes keys for the partition [ri, ri+1). Nodes that manage

adjacent ranges are said to be neighbors. We consider two

different directions: forward, towards which indexed values are

increasing and backward, where values are decreasing. Node

Ni’s forward and backward neighbors are Node Ni+1 that is

responsible for the adjacent range [ri+1, ri+2) and Node Ni−1

that is responsible for the adjacent range [ri−1, ri) respectively.

As item load lj(t), j ∈ [1,M] at time t, we define the number

of user requests for this specific item over a specific time

interval (for instance, keys/sec). Item load can be viewed as

a portion of bandwidth (kb/sec) consumed on queries for this

key. The server load Li(t) of node Ni at time t is the sum of

the loads of the items that it stores: Li(t) =
∑ri+1

j=ri
lj(t).

We are interested in keeping the natural ordering of the

indexed keys, so as to facilitate the routing and answering of

range queries. Each stored item has a different popularity that

is assumed not to be known beforehand and to change over

time. Users perform both exact match and range queries. In the

case of range queries, more than one node may be contacted

in order for the correct answer to be computed.

We assume that each node Ni, according to its capabilities

sets a local load threshold, thresi. When the load exceeds this

value Li(t) > thresi, the node wishes to shed some of its load

according to the load balancing algorithm that is implemented.

Our goal is to transform the set of partition boundaries

through consecutive item exchanges or node migrations after

some time so that Li(t
′) < thresi, ∀i ∈ (0, N]. In addition,

our goal is to achieve a balanced load distribution.

3 LOAD BALANCING USING NEIGHBOR ITEM
EXCHANGE AND NODE MIGRATION

Balancing is performed by transferring keys from overloaded

peers to less loaded ones. The necessity for preserving order

in a range-queriable data structure requires that any item ex-

change must be performed only between neighboring nodes in

the structure. Nevertheless, there are situations where several

neighboring nodes experience similar load stress. In that case,

distant underloaded peers can gracefully depart from their

place, join in the overloaded area and take a portion of its keys.

While this operation seems more efficient, a large number of

message exchanges is required for the remote node location

and the overlay structure maintenance.

Distributed structures that support range queries perform

routing in logarithmic time by maintaining a routing table

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

L 0

L C

L max

N

t = t a

m-1 N m N m + 1

N m

F[N]mB[N]m

t= t b

N m

N m

N p N p + 1

B[N]p F[N]p + 1

Fig. 3. Overlay maintenance communication cost for migration of node Nm next to node Np

list of logN increasingly distant nodes (for an overlay of

size N). Without loss of generality, we consider these nodes

to be placed in Lmax levels (at the lowest level, L0, each

node holds the IDs of its immediate neighbors, etc). The

maintenance cost of this overlay is a costly procedure in terms

of communication exchange between the participating nodes:

Figure 3 depicts the message exchanges that occur when node

Nm leaves its place at time ta (left part of Figure 3) and

re-joins next to node Np at time tb (right part of Figure 3).

Solid lines represent node routing links, whereas dotted ones

represent the messages required for overlay maintenance. In

the described structure, every node contains 2Lmax routing

entries (backward and forward for every level). For simplicity,

we describe the procedure for a random level, Lc: Before

node Nm leaves its place, it removes every forward and

backward link stored in tables F [Nm] and B[Nm] respectively

(lines marked with an X). This triggers a number of message

exchanges where nodes that were in F [Nm] and B[Nm] (i.e.,

Nm’s old neighbors) contact a number of distant nodes in order

to fill their routing table “hole” (dotted lines on the left side of

Figure 3). This operation is carried out for every old neighbor

in 2Lmax levels. When node Nm re-enters between nodes Np

and Np+1 (right side of Figure 3) at time tb, it uses F [Np+1]
as forward and B[Np] as backward links, scans the structure

(dotted lines) and creates its own routing table (solid lines).

We now describe two different load balancing algorithms:

NIX (Neighbor Item Exchange), that transfers only keys

between neighboring nodes and MIG (Node Migration) that

transfers both keys and nodes from remote arbitrary locations.

Algorithm 1 NIX(Ni → Ni+1, load)

1: {Ni calculates key range to pass to Ni+1}
2: j ← ri+1

3: while j ≥ ri do
4: if

∑ri+1

m=j lm ≥ load then
5: key range is [j, ri+1]
6: break
7: else
8: j ← j − 1
9: end if

10: end while
11: Ni transfers [j, ri+1] to Ni+1

12: New Ni partition : [i, j]
13: New Ni+1 partition : [j, ri+2]

3.1 NIX

The load exchange between neighboring nodes is described in

Algorithm 1. For simplicity, we describe the situation where

keys are transferred from Node Ni to its forward neighbor

Ni+1. The transferring node (which we will refer to as the

splitter peer) sets a pointer j = ri+1 and scans its range

backwards. The procedure stops when sufficient number of

items have been found so as to fulfill its request. Moreover,

helper nodes can alleviate their neighbors immediately: the

helper can answer queries on behalf of the neighbor while the

process is not completed, as they are both aware of the location

of the pointer j. We note here that the splitter-helper node ID

change caused by the range adjustment does not have to be

reflected immediately to their remote neighbor’s routing tables,

as the overlay consistency is preserved (the node ordering re-

mains unaltered). Therefore, the new IDs can be disseminated

lazily with the first routing maintenance message exchange.

Nevertheless, it is obvious that a major disadvantage of NIX
is that possibly many iterative such operations may be needed

in order to balance load inside large regions of loaded peers.

Algorithm 2 MIG(Node Nm → Node Np, load)

1: NIX(Nm → Nm−1, Lm)

2: for all Ni in Nm’s routing table do
3: Nm removes link to Ni

4: Ni searches for new routing entry

5: end for
6: NIX(Np → Nm, load)

7: Nm creates new routing table

3.2 MIG
In Algorithm 2 we describe the situation where Node Nm

leaves its place to join next to overloaded Node Np and take

a portion of its keys. Np locates Nm by issuing probing

messages to its routing table neighbors until it locates an idle

and underloaded peer that could migrate next to it. MIG is

performed in two phases: In the first phase, Node Nm transfers

its partition to its neighboring node Nm−1, clears its routing

links, and informs them to search for a new entry (leave phase,

lines 1-5 of Algorithm 2). In the second step of the procedure

(the join phase), Node Nm places itself next to the overloaded

peer, accepts a portion of its load and creates its new routing

table (lines 6-7 of Algorithm 2). This process was thoroughly

described in Figure 3.

3.3 Analysis
In the following, we present an analysis to calculate the

theoretical worst upper bounds for the completion time and

amortized balancing costs (i.e., costs per balancing operation)

of NIX and MIG. We consider three types of amortized

balancing costs, with respect to bandwidth consumption for:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

….

t0

…. ….

N
M-N

….
N1 N2 NN

thres

tN-1

….
M-N

….
N1 NNNN-1

thres

N2 N3

N-1

t0

… … ….
N1 N2 NN

thres

…
M
N
_ M

N
_

tC

…
N1

thres

M
N
_

….
…

M
N
_

….
NN

NIX start NIX end MIG start MIG end

Fig. 4. Worst case of initial setup and converged balanced network for the NIX and MIG cases

keys

thres

keys

thres

A

A

Lo
ad

Lo
ad

t=ta t=tb

Fig. 5. Balancing effect of a chain of NIX operations

Lo
ad

keys

thres

Lo
ad

keys

thres
A

A B

t=ta t=tb

Fig. 6. Balancing effect of a single MIG operation

item exchanges between nodes (Citx), overlay maintenance

during migrations (Covm) and locating underloaded peers

during probing (Cprb).

In Theorems 1 and 2, we use the aggregate method of

amortized analysis to calculate the average cost of each

balancing operation and completion time of NIX and MIG in

the worst case of an initial setup (i.e., worst upper bound of

amortized cost). We utilize the notations of Section 2.

Theorem 1: In the worst case, the running time of NIX
is O(N) and the amortized cost per balancing operation is

O(M).

Proof: In the first picture of Figure 4 we present an initial

setup of node and item combination that leads NIX to its worst

behavior in terms of completion time and item exchanges.

Buckets represent nodes and balls depict items. Bars above

items represent the unit item load lj = 1. For simplicity, we

consider that for each node, thresi = 1. At the beginning,

N1 contains all M objects, of which only the leftmost N are

requested (i.e., they have lj = 1, j ∈ (0, N]) and the rest

M-N are not queried (i.e., lj = 0, j ∈ (M − N,M]). All

other nodes are empty. Since L1 = N > thres1, N1 will

perform a NIX operation with its neighbor N2 at t0 and it

will transfer to it a total of M − 1 keys, keeping only the

leftmost key, so that L1 = l1 = 1 <= thres1. Likewise, at

t1 node N2 will transfer M − 2 keys to its right neighbor N3

keeping only its leftmost key. Finally, after N-1 steps, in the

second picture of Figure 4 all nodes are balanced, since they

will be responsible for a single item whose load is 1. NN

will also contain the remaining M-N zero load keys. Given

that N-1 steps are needed, the running time of NIX is O(N −
1) = O(N). By summing all moved items in every step, we

have the total cost
∑N−1

i=1 (M − i) = M(N − 1) − (N−1)N
2 .

As no probing and overlay maintenance is necessary, the cost

per operation then is Citx =
M(N−1)− (N−1)N

2

N−1 = M − N
2 =

O(M −N). Since N � M , the cost then is O(M).

Theorem 2: In the worst case, the running time of MIG is

constant O(1) and the amortized cost per balancing operation

is O(MN + logN).

Proof: In the third picture of Figure 4 we depict a worst

initial network setup for the MIG case. Similar to NIX, N1

contains all M objects, of which only N are requested and

every node sets thresi = 1. All other N-1 nodes are empty at

first. Requested items are evenly distributed in the ID space:

for every M
N objects, there is one with lj = 1 (for instance,

lj = 1 if j mod N = 0, and 0 otherwise). In this setup,

N1 will initiate N-1 migrations with the rest of the nodes,

where in each migration M
N keys are offloaded from N1 to

the helper. Finally (fourth picture of Figure 4), a total of∑N−1
i=1

M
N = (N−1)MN keys are transferred. The cost for item

exchanges then is Citx =
(N−1)M

N

N−1 = O(MN) which is basi-

cally the cost for a node insertion or deletion (see Theorem 3 of

Karger’s work [1]). The probing cost Cprb is O(logN) since it

involves contacting logN neighbors. Moreover, in most DHT-

like networks, overlay maintenance costs Covm = O(logN)
messages. Therefore, the total MIG cost is Citx + Covm +
Cprb = O(MN + logN). Migrations take a constant number of

steps as, unlike NIX operations, they are executed in parallel:

therefore we consider MIG running time to be O(1) (although

overlay maintenance usually takes O(logN) time, this can

happen lazily after the key transfer phase).

To gain insight into the behavior of the two algorithms

in a more general case, let us consider a typical “balls into

bins” setup, with N items being uniformly distributed among

N nodes (we only consider N out of M items, since these

items affect node loads). The fraction of underloaded nodes,

i.e., nodes with a load less or equal to 1, is calculated

by estimating the probability of a node to hold either one

or no popular item. Utilizing the equation that calculates

the probability of a particular bin to have exactly k balls

we have: P [Nj is underloaded] =
∑1

k=0 P [Lj = k] =∑1
k=0

(
N
k

)
(1
N)k(1− 1

N)N−k. For large N, this is equal to
1
e + 1

e = 0.74. Moreover, the maximum load of a node is
logN

loglogN . Thus, only 26% of the nodes is overloaded and the

most loaded node(s) are well under the initial load of N in

the worst case of NIX and MIG. Both algorithms benefit in

this case: NIX will initiate small concurrent waves of item

exchanges, finishing faster than O(N) (as more waves are

done in parallel) and less costly than O(M) (as waves involve

a smaller number of nodes and transfer a smaller amount of the

id space). Similarly, MIG will transfer less items than O(MN),
since a fraction (P [Lj = 1] = 1

e = 37%) of the nodes will not

participate in the balancing procedure, as their load is equal

to their thres value.

Although MIG performs better in terms of completion time

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

and exchanged messages for a large number of N, it needs

extra messages for overlay re-organization and probing. This

can be avoided with the selective use of NIX operations.

In Figure 5, a situation where a wave of NIX operations

is more favorable compared to MIG is presented: Node A

can shed its load towards its underloaded neighbors without

the need for extra remote nodes, leading the neighborhood

in a balanced state (right side of Figure 5). In Figure 6 we

describe a situation where a MIG operation is more cost-

effective than a number of NIX operations. Node A is located

between nodes that their load is near their thres value (left

side of Figure 6). In this situation, a chain of NIX operations

would simply forward the load from one node to another, as

there is no nearby underloaded neighbor that could absorb

it. On the other hand, the migration of a remote node B

next to A (right side of Figure 6) solves the problem in

one step, justifying the extra number of required probing and

maintenance messages needed to locate the underloaded peer

and fix the topology respectively. In any case, in order for A

to decide the appropriate balancing action, a clear view of the

neighborhood’s load is required.

From this, it is obvious that fewer MIG operations can

produce the same result to considerably more NIX ones, as

helping nodes can be placed anywhere. Nevertheless, it is also

evident that each node migration is costly, while the location

of possible helpers and their exact new location has to be

optimized. On the other hand, NIX avoids probing and routing

maintenance messages, but it requires a large number of item

exchanges between successive nodes, especially when it is

applied in the “middle” of an overloaded neighborhood.

Procedure 3 REMOTEWAVE(Np+lc+1, exNodeslc+1 hops)

1: FindNm such that

Lm < thresm and Nm is idle

2: if such Nm exists then
3: tmpLm = Lm, j = 0
4: while tmpLm <= tmpLp+lc+1

and j <= exNodeslc+1 do
5: if Nm+j+1 is idle then
6: tmpLm+ = Lm+j+1

7: Node Nm+j+1 sends a LockRequest to Nm+j+2

8: else {Nm+j+1 is locked}
9: Nm+j aborts lock

10: end if
11: j = j + 1
12: end while
13: rNodes = j
14: end if
15: return rNodes

4 NIXMIG

In this section we describe NIXMIG, our proposed hybrid

approach. The goal of NIXMIG is to balance load by adaptively

choosing to utilize either NIX or MIG. The rationale behind

our method is that MIG is fast but costly, whereas NIX is

slow but cost-effective. Hence, we devise a scheme that,

using only local knowledge, identifies conditions where MIG

Lo
ad

k1 k2 k3 k4

Phase 1: Exam

Lo
ad

k1 k2 k3 k4

thres

Lo
ad

k1 k2 k3 k4

Phase 2: NIX

Phase 3: MIG

N10 N11 N12 N13

N10 N11 N12 N13

N10 N11 N12 N13

N1 N2 N3 N4

N1 N2 N3
N4

N1 N2 N3 N4 N13 N12 N11

keys

keys

keys

thres

thres

Fig. 7. A successful NIXMIG operation

TABLE 1
NIXMIG variables

variable definition
ttl Maximum number of contacted nodes per wave
lc Number of nodes reserved for the NIX wave

rNodes Number of nodes reserved for the MIG wave
tmpLp Load of node Np if balancing is performed

movedLoadlc Load that will be moved from Np+lc to Np+lc+1

if balancing is performed
exNodeslc Number of extra remote nodes needed at step lc

of Procedure 5
Nm Remote node that will accept migration load
a Load fraction accepted by the helper if the splitter’s

load is more than overThres

is necessary to speed up the balancing process but is not

excessively utilized. In short, when NIX operations cannot

alleviate an overloaded neighborhood, our method employs

node migrations for faster load relief in that area.

4.1 Algorithm
NIXMIG (Algorithm 4) is initiated when the load of a node

Np passes its self-imposed thresp value and it is performed in

three phases: In the first phase (Exam phase), the overloaded

node examines the load status of a number of neighboring

nodes (Procedure 5) and, if necessary, an additional number

of distant nodes is contacted (Procedure 3). In Table 1, we

explain the variables used by the aforementioned methods. The

node examination is performed in a wave-like manner towards

one direction of the structure, where each node contacts

its successor. When the first phase is successful, then the

algorithm proceeds to the NIX phase (lines 5-12 of Algorithm

4) and portions of keys are iteratively transferred from one

neighbor to another. Finally, the algorithm proceeds to the

MIG phase (lines 14-17 of Algorithm 4), where the reserved

underloaded nodes of the remote wave offload their keys to

their neighbor and take a portion of the range of the final node

of the NIX wave. We note here that the MIG phase is optional:

it is triggered only if extra remote nodes are needed to absorb

a neighborhood’s load. Moreover, reserved (i.e., locked) nodes

continue to answer user queries but they do not participate in

or initiate other balancing actions until they are unlocked (lines

11 and 16 of Algorithm 4) or a timeout has occurred.

In Figure 7 we depict the phases of a successful NIXMIG
operation initiated by node N1. For clearer presentation, we

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

Algorithm 4 NIXMIG(Node Np, ttl hops)

1: LOCALWAVE(Node Np, ttl hops)
2: if exNodeslc+1 > 0 then
3: REMOTEWAVE(Node Np+lc+1, exNodeslc+1 hops)
4: end if
5: for i = 0 to lc do
6: if Lp+i > overThresp+i then
7: load = a(Lp+i − thresp+i)
8: else if Lp+i > thresp+i then
9: load = Lp+i − thresp+i

10: end if
11: NIX(Np+i → Np+i+1, load), unlock Np+i

12: end for
13: if rNodes > 0 then
14: for i = 0 to rNodes do
15: MIG(Nm+i+1 → Np+lc,

tmpLp+lc

rNodes)

16: unlock Nm+i+1

17: end for
18: end if

Procedure 5 LOCALWAVE(Node Np, ttl hops)

1: lc = 0, tmpLp = Lp, Np sends a LockRequest to Np+1

2: while lc <= ttl and exNodesp+lc+1 <= ttl do
3: if Np+lc+1 is idle then
4: if tmpLp+lc > overThres then
5: movedLoadlc = a(tmpLp+lc − thresp+lc)
6: else {0 < tmpLp+lc < thres}
7: movedLoadlc = tmpLp+lc − thresp+lc

8: end if
9: tmpLp+lc = Lp+lc −movedLoadlc

10: tmpLp+lc+1 = Lp+lc+1 +movedLoadlc
11: exNodeslc+1 = � tmpLp+lc+1

thresp+lc+1
− 1	

12: Np+lc locks Np+lc+1

Node Np+lc+1 sends a LockRequest to Np+lc+2

13: else {Np+lc+1 is locked}
14: Np+lc aborts lock

15: end if
16: lc = lc+ 1
17: end while
18: return < lc,exNodeslc+1, tmpLp+lc+1 >

assume that all nodes have equally set their thres value (dotted

horizontal line). In the Exam phase, N1 issues a Lock Request

that eventually reaches N4 through N2 and N3. N4 calculates

the number of extra nodes that are needed to migrate to the

neighborhood to absorb its load, and issues a new request

for remote node reservation to node N10. When N10 reserves

nodes N11 N12 and N13, the NIX Phase begins. In the NIX
phase of Figure 7, nodes N1 to N3 iteratively shrink their

responsible range by adjusting their boundaries and drop their

load under their required thres value. At the end of Phase 2,

most of the neighborhood’s load ends up to N4, but this will

happen for a very small period of time, as N4 has already

reserved the requested number of remote nodes to share this

load. Finally, in the MIG Phase, the remote underloaded

reserved nodes N11,N12 and N13 sequentially offload their

keys to N10, place themselves next to N4 and take a portion of

its range. We notice that at the end of Phase 3 all participating

nodes’ loads are below their thres value. We now give a more

detailed presentation of the algorithm phases.

Exam phase: The Exam phase of NIXMIG serves a dual

purpose: it examines the load status of the contacting nodes to

decide the appropriate balancing actions, while reserving them

to participate in the balancing procedure. The load examination

begins with the node’s neighborhood (Procedure 5): after each

node is successfully reserved (line 3 of Procedure 5), a NIX
operation between Node Np+lc+1 (that acts as a helper) and

its predecessor Np+lc (that acts as a splitter) is simulated by

Np+lc+1. The splitter’s load in this calculation is assumed

to be tmpLp+lc and is equal to the load that would end up

to it if a chain of lc NIX operations was initiated by Np

towards Np+lc. Using this variable, node Np+lc+1 calculates

the load that will be transferred towards it (movedLoadlc
variable). This recursive calculation can be seen in Phase 1

of Figure 7: The movedLoad variable in steps 1,2 and 3 is

depicted with the dotted rectangle above nodes N2,N3 and N4

respectively. In each step, the tmpL variable is calculated by

adding movedLoad to the nodes’ current load. tmpLp+nc+1

is used by Np+lc+1 to estimate the number of extra remote

nodes that are required to migrate next to it to absorb the

neighborhood’s load (exNodeslc+1 variable in line 11). The

examination of a node’s neighborhood finishes when a number

of ttl nodes have been successfully reserved, or when it is

estimated that more than ttl remote nodes are needed to absorb

the calculated extra load (line 2).

When the previous phase finishes, Np+lc+1 uses the

exNodeslc+1 variable to decide whether extra nodes are

needed (line 2 of Algorithm 4). If this is the case, it uses the

previously described underloaded node location mechanism to

locate a remote peer Nm (line 1 of Procedure 3). Nm then tries

to reserve exNodeslc+1 adjacent nodes that are able to leave

their place and help Np’s overloaded neighborhood. These

nodes will offload their keys to Nm before they migrate. The

reservation is performed in a similar wave-like manner for at

most exNodeslc+1 hops. During reservations, each contacted

node estimates tmpLm, and if this exceeds tmpLp+lc+1, the

algorithm moves on to the next phase (line 6 of Procedure

3), with only the so far reserved nodes participating in the

migration procedure. Therefore, the goal of the remote locking

procedure is to reserve the required exNodeslc+1 without

overloading Nm that will accept their load when they migrate.

When this phase completes, the locked nodes are ready to

begin balancing actions. Moreover, during the exam phase

no item exchanges are performed. If the exam phase is not

successful (e.g. not enough underloaded nodes are found, or

a contacted node participates in another balancing procedure),

nodes are unlocked and an exponential back-off mechanism

is applied to the time Np will wait before it initiates another

NIXMIG operation.

NIX phase: When the locking phase succeeds, the algo-

rithm proceeds to the second phase and the initiator starts an

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

Lo
ad

t=ta

A

r1 r2rb keys
t=tb

A
r1 r2

B
rb

Fig. 8. Smart remote node placement: Node A scans
its range and decides to place B on its forward direction,
minimizing the number of transferred items |r2 − rb|.

iterative procedure where portions of ranges are transferred

from one locked node to its neighbor for all the lc reserved

nodes (lines 5-12 of Algorithm 4). In order to calculate the

portion of load that a splitter will shed, we introduce the over-
Thres threshold, where overThres>thres. If the splitter’s

load is above the overThres, then only a fraction a of the extra

load is accepted. Otherwise, the splitter’s excessive load is

fully accepted. The purpose of overThres is to smooth out the

key/load exchanges between sequential NIX executions. When

NIX is performed consequently in a number of overloaded

nodes, some nodes may end up with a large portion of the

load that was shifted to them during recursive NIX procedures

from all the nodes in the forwarding path. For this exact case,

the helper peer does not alleviate the splitter from all of its

excessive load, instead, it only accepts a portion of it.

MIG phase: The final step of the algorithm is the MIG
wave, where a number of rNodes remote locked nodes offload

their keys to node Nm, leave their place and join next to

Np+lc+1 (lines 13-18). Placing remote nodes next to Np+lc+1

and not between nodes Np and Np+lc+1 minimizes intra-

node communication, as nodes Np to Np+lc are unlocked

after the NIX wave (line 11), and their routing tables are not

significantly altered.

To sum up, NIXMIG first examines the neighborhood of

an overloaded node: if its extra load can be absorbed by

its neighbors it performs a cost-effective “wave-like” set of

successive item exchanges. If this is not the case because, for

instance, the entire neighborhood is overloaded, it selectively

initiates a more expensive migration request to speed up the

process.

4.2 Enhancements

In this section, we present enhancements to the original

NIXMIG algorithm that further decrease the bandwidth uti-

lization of the balancing procedure. Specifically, we present

remote underloaded node location and placement mechanisms

which minimize traffic during balancing operations.

Remote underloaded node location: NIXMIG’s perfor-

mance depends on its ability to easily locate an underloaded

node. To avoid random probing or the maintenance of a

centralized registry we utilize the query-induced traffic to pig-

gyback information about underloaded nodes. As packets are

routed, underloaded nodes add their ids and all participating

nodes extract from the incoming packets this information to

a local cache. Overloaded nodes use this cache to contact

underloaded ones and if they fail to do so, then they resort

to random probing.

Remote underloaded node placement: When a remote

underloaded node has been successfully located and reserved,

the splitter must decide which range to offload to it. In

situations where the load is uniformly distributed in the key

space, the same load movement results in the same (in terms

of transferred items) key movement. Nevertheless, in skewed

distributions, this property does not hold (e.g. a small range

of items may experience the same load with a larger one), and

the smallest possible range must be detected and transferred

during load movement. In Figure 8 we present this detection

mechanism: Overloaded node A is responsible for the key

range [r1, r2] in which the load is not uniformly placed.

On the left side of Figure 8 at t = ta, node A simulates

two NIX operations by scanning its range in the forward

direction starting from r1 (arrows marked with an X) and in

the backward direction starting from r2. Finally, on the right

side of Figure 8 at t = tb, node B is placed in the forward

direction of A, as this minimizes the number of transferred

keys (|r2 − rb| < |r1 − rb|).

4.3 Theoretical Analysis

Load balancing between neighboring nodes can be classified in

two general categories [24]: diffusion and dimension exchange
methods. In the case of diffusion [25], every node balances

its load concurrently with every other partner, whereas in the

dimension exchange approach [26] every node is allowed to

balance load only with one of its neighbors at a time (NIXMIG
falls into this category). Diffusion methods are analyzed using

linear algebra, whereas the analysis of dimension exchange

methods is performed using a potential function argument.

Potential functions map the load distribution vector at time

t �w(t) = (L1(t), . . . , LN (t))T into a single value that shows

how “far” the system is from the balanced state. In the case of

homogeneous peers, the balanced state is represented by the

vector �wbl = (w̄, . . . , w̄)T where w̄ =
∑N

i=1 Li(t)

N (every node

gets an equal portion of the total load).

The goal of a balancing algorithm is to ensure that ev-

ery load exchange between nodes will eventually decrease

an initially large potential value and will lead the system

to a more balanced (ideal) state. If this drop is ensured,

the algorithm converges to an equilibrium. In the case of

NIXMIG, we define the potential function of an arbitrary

load distribution as φ(t) =
∑N

i=1(Li(t) − thresi)
2, where

φ(t) is the square of the Euclidean distance between �w and

the vector �wthres = (thres1, . . . , thresN)T in which every

node’s load is equal to its self-imposed thres value (ideal

balanced state). Note that NIXMIG takes into account node

heterogeneity and its balanced state is different from �wbl. What

is more, recall from Section 2 that NIXMIG terminates when

Li(t) < thresi∀i ∈ [0, N], which means that a balanced state

is every load distribution vector that satisfies this constraint. In

Theorem 3 we prove the convergence of NIXMIG algorithm,

along with the preconditions that need to hold for the system

to reach an equilibrium.

Theorem 3: Any load balancing action using NIXMIG be-

tween a splitter node Ni and a helper node Nj leads the system

to a balanced state, as long as the difference of the splitter’s

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

load from its thres value is by a constant of 1−a bigger than

the difference of the helper’s load from its thres value, that

is, (Li − thresi)(1− a) > Lj − thresj .

Proof: In an atomic item exchange between two neigh-

boring nodes, the load that will be moved from the splitter to

the helper is l = a(Li − thresi), 0 < a ≤ 1 (the case where

thresi < Li < overThresi is covered by the general case

for a = 1). The new loads are L′
i = Li − l, L′

j = Lj + l.
Now, we have to show that the drop in the potential Δφ =
φ− φ′ caused by this load exchange is positive:

Δφ = (Li − thresi)
2 + (Lj − thresj)

2

− [(Li − l)− thresi]
2 − [(Lj + l)− thresj]

2

= 2a(Li − thresi)[(Li − thresi)(1− a) + (thresj − Lj)]

Δφ is the product of three terms. The first two are positive

because a ∈ (0, 1] (1) and Li is overloaded (Li > thresi (2)).
So, the potential drop is positive if the third term is positive

which happens if (Li − thresi)(1− a) > Lj − thresj .

Corollary 1: Any load balancing action using NIXMIG be-

tween a splitter node Ni and a helper node Nj leads the system

faster to an equilibrium as long as the helper is underloaded,

that is, Lj < thresj .

Proof: The algorithm’s convergence rate is faster as long

as the selection of balancing partners ensures a larger drop in

the Δφ value. If Lj is underloaded, then the third term of Δφ
is larger (as a sum of two positive terms) compared to the case

when Lj is overloaded.

Corollary 1 is a special case of Theorem 3 that shows the

importance for the algorithm’s convergence of easily locating

underloaded peers. In Corollary 2 we identify the moved load

value lopt that maximizes the algorithm’s convergence rate

leading the system quicker to an equilibrium. We define as

thdifi = Li − thresi the difference of Ni’s load from its

thresi value.

Corollary 2: NIXMIG’s optimum convergence rate is ob-

tained when half of the difference of thdifi from thdifj is

transferred from splitter Node Ni to helper Node Nj , that is,

lopt =
1
2 (thdifi − thdifj)

Proof: Δφ as a function of the moved load l is

Δφ(l) = (Li − thresi)
2 + (Lj − thresj)

2

− [(Li − l)− thresi]
2 − [(Lj + l)− thresj]

2

= −2l2 + 2(Li − Lj + thresj − thresi)l

We notice that Δφ(l) is a quadratic function of l with coeffi-

cients a = −2, b = 2(Li−Lj + thresj − thresi) and c = 0.

Because a = −2 < 0, Δφ(l) has a maximum point for

lopt = − b

2a
= −−2(Li − thresi + thresj − Lj)

−4

=
1

2
[(Li − thresi)− (Lj − thresj)]

=
1

2
(thdifi − thdifj)

In the case of a homogeneous splitter-helper pair (thresi =
thresj) from Corollary 2 we notice that lopt =

1
2 (Li − Lj),

and thus aopt =
1
2 .

5 EXPERIMENTAL RESULTS

We now present a comprehensive simulation-based evaluation

of our method on our own discrete event simulator written in

Java. The time unit in our simulation is assumed to be equal

to the time needed by a node to perform an operation with

another node. Such operations include atomic item exchanges,

lock requests, one-hop query routing messages, etc. For in-

stance, a LOCALWAVE wave of ttl = 5 takes five time units

to complete. For the remaining of the experimental section we

consider the time unit to be equal to one second. Starting off

from a pure Skip Graph implementation, we incorporate our

online balancing algorithms on top. By default, we assume a

network size of 500 nodes, all of which are randomly chosen

to initiate queries at any given time.

During the start-up phase, each node stores and indexes an

equal portion of the data, M
N keys. By default, we assume 50K

keys exist in the system, thus each node is initially responsible

for 100 keys.

Queries occur at rate λr = 250queries/sec with expo-

nentially distributed inter-arrival times in a 4000 sec total

simulation time. Each requester creates a range by choosing

a starting value according to some distribution. The range

of each created query is constant, and for the 50K setting

it is equal to 100 keys (i.e., every range query requests

100 consecutive keys). The total network workload is a

product of the query range with the query arrival rate, i.e.,

wtot = 250queries/sec · 100keys/query = 25.000keys/sec
(in every second, around 25K keys are requested in total).

Recall from section 4.3 that in the ideal balanced state of an

homogeneous network, each node should get an equal load

portion of w̄ = wtot

N = 25.000
500 = 50keys/sec.

In our experiments, we utilize several different distributions

to simulate skew: A zipfian distribution, where the probability

of a key i being asked is analogous to i−θ and a pulse
distribution, where a range of keys has a constant load and the

rest of the keys are not requested. By altering the parameters of

each distribution (e.g., the θ parameter, the width of the pulse,

etc), we manage to create more or less skewed workloads to

test our algorithms.

A node calculates its load using a simple moving average

variable that stores the number of the keys it has served over

a predefined time window. To minimize fluctuation caused by

inadequate sampling, this time window is set to around 700

seconds. Since nodes in the beginning of the simulation do

not have enough samples to estimate their load, we let the

system stabilize on the input workload for 700 seconds without

performing any balancing operation.

In the following, we plan to demonstrate the effectiveness

of our protocol to minimize overloaded peers and create a

load-balanced image of the system. As we mentioned before,

we are interested in the resulting load distribution (in terms of

overloaded servers, load balancing), the rate at which this is

achieved (measured in seconds), as well as the cost measured

in the number of exchanged messages and items.

During the experiments, NIXMIG’s parameters were set

to the following values: thres = 60keys/sec, α = 1
2 ,

ttl = 5 nodes and overThres = 400keys/sec. The idea

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

0 10 20 30 40 50
% pulse width

0

250

500

750

1000

1250

1500
co

m
pl

et
io

n
tim

e
(s

ec
)

NIX
IB
MIG
NIXMIG

10 20 30 40 50
% pulse width

0

15K

30K

45K

60K

75K

90K

of

 e
xh

an
ge

d
m

es
sa

ge
s IB

MIG
NIX
NIXMIG

10 20 30 40 50
% pulse width

10K

100K

1M

of

 e
xc

ha
ng

ed
 k

ey
s NIX

IB
MIG
NIXMIG

10 20 30 40 50
% pulse width

0

0.25

0.5

M
IG

 to
 N

IX
 ra

tio

IB
NIXMIG

Fig. 9. Completion time, exchanged messages and items and MIG to NIX ratio of NIXMIG, plain NIX, plain MIG and
Item Balancing for various pulse widths.

behind these parameters is the following: the thres value is

near the minimum theoretical value of w̄ = 50keys/sec for

which most of nodes eventually participate in the balancing

procedure: the larger the thres value, the easier (i.e., using

less operations and bandwidth consumption) it is for NIXMIG
to bring the system to its equilibrium making its comparison

to other algorithms not fair. Furthermore, for homogeneous

splitter-helper pairs, we have shown in Corollary 2 that

αopt = 1
2 . With respect to ttl and overThres, in Table 2

we experimentally study NIXMIG ’s behavior where in each

column we vary the ttl from 1 to 10 nodes and in each line we

vary the overThres from 160keys/sec to 500keys/sec. Table

cells show the aggregated performance results for each ttl and

overThres combination. We notice that a combination of a

ttl value of 5 nodes (third column) and an overThres value

of 400keys/sec (third line) balances load quicker and cheaper

compared to other ttl− overThres combinations: smaller ttl
values prohibit NIXMIG to examine a sufficient number of

nodes, whereas a larger ttl value slows down the process due

to more inter-node communication during locking procedures.

The selected overThres value enables NIXMIG to move the

optimal amount of load during neighbor item exchanges: larger

values lead to unnecessary load movement, whereas smaller

values require more balancing operations.

TABLE 2
Exchanged items and messages and completion time for

various overThres and ttl values

overThres
ttl

1 3 5 10

keys msgs time keys msgs time keys msgs time keys msgs time
160 62K 21K 92 74K 21K 93 85K 22K 170 134K 39K 554
280 68K 23K 114 79K 22K 120 80K 20K 117 80K 18K 147
400 66K 22K 116 71K 21K 108 70K 19K 77 80K 20K 173
500 69K 23K 147 71K 20K 105 71K 20K 105 80K 20K 166

5.1 Measuring the effectiveness of NIXMIG

In the first set of experiments, we compare NIXMIG’s per-

formance in a number of different input workloads against

simple MIG, simple NIX and the Item Balancing protocol

(hence IB) proposed by Karger and Ruhl in [1]. IB was chosen

as, in contrast with other systems, it applies the same minimal

set of operations compared to NIXMIG: they both avoid the

use of centralized load directories, item replication and node

virtualization (for a brief description of IB and a survey of

similar systems refer to Section 6).

As input workload we utilize pulses of variable width from

3% to 50% while keeping a constant surface (the pulse height

is inversely proportional to its width) and constant surface

zipfian workloads of variable θ from 1 to 4.5. In every case,

nodes set their thres value to 60reqs/sec. This thres value

can also be seen as corresponding to 60kb/sec bandwidth

allocation, assuming that, for each request, 1kb of data is

transmitted. The simulation terminates when every node has

dropped its load under its thres value.

We have implemented the IB protocol setting ε = 1
4

which provides the best balancing result. Moreover, probing

messages occur with a rate of 0.1msg/sec to keep the probing

traffic low. In any case, we terminate the execution of IB when

50 seconds of simulation time have passed and no balancing

action has occurred.

To apply NIX, we use Algorithm 4 and omit the RE-

MOTEWAVE procedure: each overloaded node performs only

a LOCALWAVE followed by a chain of NIX operations. For

the wave direction selection, nodes use the following simple

heuristic: new lock requests are sent towards the direction

from which less lock requests were encountered. For MIG,

nodes omit the LOCALWAVE of Algorithm 4 and directly

proceed to the REMOTEWAVE procedure followed by a chain

of MIG operations. In every situation, the load is balanced by

moving most of the nodes inside the “hot” pulse area that is

initially handled by a small number of overloaded nodes. In

the NIX case overloaded nodes iteratively shrink their range by

offloading keys to their immediate neighbors, in the MIG case

remote nodes leave their place and rejoin inside the overloaded

area and in the NIXMIG case a combination of both these

methods is adaptively utilized.

In Figure 9 we compare NIXMIG against simple NIX simple

MIG and the IB protocol. In the first graph, we present the

completion time of each algorithm for the applied workloads.

We notice that both MIG and NIXMIG balance load 4-8 times

faster than NIX: for NIX, every node must accept and offload

a large number of items for the balancing to succeed, whereas

in the other two algorithms this is done in a more efficient

way. Moreover, we notice that NIXMIG converges in almost

half the time than IB.

Nevertheless, in the second graph we notice that MIG
is costly in terms of message exchanges, as it carelessly

employs a large number of unnecessary node migrations. On

the other hand, NIXMIG utilizes node migrations only when

the load cannot be absorbed locally, thus keeping the number

of required messages low compared to both NIX and MIG.

In addition, NIXMIG requires less than half the messages

compared to IB: IB requires a large number of probing mes-

sages, whereas NIXMIG uses the underloaded node location

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

1 2 3 4 5
zipf θ

0

150

300

450
co

m
pl

et
io

n
tim

e
(s

ec
)

IB
NIXMIG

1 2 3 4 5
zipf θ

0
20K
40K
60K
80K

100K
120K

of

 e
xh

an
ge

d
m

es
sa

ge
s IB

NIXMIG

1 2 3 4 5
zipf θ

0

100K

200K

300K

of

 e
xc

ha
ng

ed
 k

ey
s IB

NIXMIG

1 2 3 4 5
zipf θ

0

0.25

0.5

M
IG

 to
 N

IX
 ra

tio

IB
NIXMIG

Fig. 10. Completion time, exchanged messages and items and MIG to NIX ratio of NIXMIG and Item Balancing for
various zipfian θ values.

100 200 300 400 500
Nodes

0

100

200

Lo
ad

IB
NIXMIG

Fig. 11. Load snapshot at
t=800 sec for a 3% pulse

700 800 900 1000 1100
Time (sec)

200

400

600

of
 e

xc
ha

ng
ed

 m
es

sa
ge

s
IB
NIXMIG

Fig. 12. # of exchanged
messages during time for
a 3% pulse

100 200 300 400 500
Nodes

0

100

200

300

Lo
ad

IB
NIXMIG

Fig. 13. Load snapshot at
t=800 sec for a zipfian of
θ = 4.5

750 900 1050 1200 1350
Time (sec)

200

400

600

800

of

 e
xc

ha
ng

ed
 m

es
sa

ge
s

IB
NIXMIG

Fig. 14. # of exchanged
messages during time for
a zipfian of θ = 4.5

mechanism described in Section 4. Furthermore, the number

of required messages in the IB algorithm increases more due

to the fact that mostly node migrations are performed, as its

MIG to NIX ratio is near 0.5 (see the fourth graph).

In the third graph we notice that NIX requires two orders

of magnitude more item exchanges than MIG and NIXMIG
due to the iterative key transfer procedure. What is more,

NIXMIG requires roughly the same number of item exchanges

compared to MIG. NIXMIG outperforms IB whereas in skewed

workloads NIXMIG exchanges one third of the items compared

to IB: the cooperative nature of NIXMIG minimizes unnec-

essary load movement (thus item exchanges) back and forth,

unlike IB where each node acts on its own. We observe that the

IB’s number of exchanged messages and items drops when the

workload is less skewed: IB performs less balancing actions,

as it cannot easily locate nodes that their load differs by a

fraction of ε.

Finally, in the fourth graph we present NIXMIG’s and

IB’s ratio of migrations to simple neighboring item exchange

operations for various pulse widths. Here we notice NIXMIG’s

workload adaptivity: in extremely skewed workloads of 3-5%

pulse widths mostly node migrations are used (recall from

Algorithm 2 that each migration requires two neighboring item

exchanges, thus the ratio in plain migrations is 0.5). When the

pulse’s width is increased, the ratio drops as load is absorbed

using more neighboring item exchanges and costly remote

migrations are avoided. On the contrary, IB most of the times

carelessly employs node migrations.

These experiments confirm NIXMIG’s adaptivity to an ar-

bitrary workload, as it identifies the most effective balancing

action, combining the advantages and avoiding the disadvan-

tages of both plain remote migrations and plain neighboring

item exchanges. We continue our experimental analysis with

a more thorough comparison of NIXMIG against IB.

In Figure 11 we present a system’s load snapshot after 100

seconds for the two algorithms for a 3% pulse. We notice that,

unlike IB(dotted line), NIXMIG (solid line) has successfully

dropped almost every node’s load under its thres value

(horizontal red line). Moreover, in Figure 12 we present the

variation of exchanged messages during time for the NIXMIG
and the IB algorithm. We notice that NIXMIG constantly

performs less message exchanges than IB. What is more, in

the IB algorithm we notice the constant traffic posed by the

random probing messages.

In Figure 10 we present the performance results of NIXMIG
against IB for the zipfian setting. In this situation, the work-

load’s skew increases as the θ parameter increases unlike

the pulse setting where the skew decreases as the pulse

width increases. In the first graph, we notice that NIXMIG’s

completion time is similar to the one in the pulse setting. On

the other hand, IB’s completion time increases compared to the

respective completion time for the pulse setting: in the zipfian

case, the load is spread more uniformly compared to the pulse

setting, making it harder for IB to identify load imbalances. In

any case, NIXMIG is three times faster than IB. In the second

graph, we notice that NIXMIG requires a constant number of

messages with a slight drop in the less skewed workload area,

as more neighboring item exchanges are performed. On the

other hand, IB requires constantly more messages due to the

reasons mentioned in the previous paragraph. In the workloads

with θ > 3 NIXMIG requires one sixth of the messages that IB
requires. In the third graph we observe that NIXMIG’s and IB’s

behavior in item exchanges is similar as in the pulse setting.

NIXMIG performs more item exchanges than IB in the less

skewed workloads of θ < 1.6, as it performs more neighboring

item exchanges. In more skewed situations, NIXMIG performs

one third less item exchanges compared to IB. The last graph

shows the adaptivity of NIXMIG where more migrations are

employed in more skewed workloads, whereas IB performs

mostly migrations in any case. Finally, in Figures 13 and 14

we present a load snapshot after 100 seconds and the variation

of the message exchanges during time respectively for a zipfian

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

Fig. 15. The Gini variation
for the dynamic setting

Fig. 16. # of overloaded
peers over time, dynamic
setting

Fig. 17. # of exchanged
messages over time, dy-
namic setting

Fig. 18. # of exchanged
keys over time, dynamic
setting

Fig. 19. Load distribution as it progresses in time: Snapshot taken at times t={800, 850, 1000, 1181} sec

workload of θ = 4.5. The same behavior as in the pulse setting

is observed: NIXMIG balances load faster and uses constantly

less messages than IB.

5.2 NIXMIG scalability

In the following experiment we study NIXMIG’s behavior

when the number of participating peers increases. Nodes share

a total of 5 million keys and the applied workload is a 10%

pulse. We vary the network size from 500 to 50,000 nodes.

Table 3 presents our findings compared to the 500 node setting

(i.e., we register the increase in measurements compared to

the 500 node setting result). We notice that the number of

messages increases linearly compared to the number of nodes.

Moreover, we also notice a slow linear increase of the comple-

tion time: even for a 100 times larger network the algorithm

terminates only 3 times slower. This happens because multiple

NIXMIG executions are performed in parallel. Finally, the

number of exchanged items remains constant: this shows that

NIXMIG does not perform unnecessary item transfers when

the network size increases.

TABLE 3
Ratio of exchanged messages, completion time and

transferred items for various network sizes compared to
a 500 node setting.

Nodes ratio Messages ratio Completion time ratio Items ratio
10 13 1.2 1.05
50 102 2.2 0.96

100 208 2.8 0.98

5.3 NIXMIG performance under dynamic workload

We now present results showing the performance of our

NIXMIG method when the workload suddenly changes its

skew. We assume an initial pulse load of width 12% and

height 430req/sec where items [10000,16000] are requested.

This pulse suddenly moves at time t=850sec to items [34000,

40000]. Note that this is an extreme scenario, since the skew

changes completely and abruptly at this time.

Figure 15 shows the variation of the Gini [27] coefficient

over time respectively. Gini values range between 0 and 1,

where 0 corresponds to perfect equality and 1 corresponds

to the theoretic case of an infinite population with only one

individual having a non-zero value. Recent work [28] proposed

its use as a load-balancing metric. Assuming our population

comprises of the number of received requests by each node,

we calculate the value of G as an index of load distribution

among servers. Note here that a low value of G is a strong

indication that load is equally distributed among them, but

does not necessarily imply that this load is low. Figure 16

shows the number of overloaded peers during time. We notice

that both metrics are affected immediately after the change

in load occurs, nevertheless, NIXMIG works over this new

situation and manages to reduce both quantities: The Gini

coefficient increases when the pulse changes, but NIXMIG
manages to keep it well under 0.9 (which is its initial value)

until it is dropped near 0.2 in the balanced state. Moreover, the

number of overloaded nodes slightly passes the initial value of

60 until it is minimized by NIXMIG. In Figures 17 and 18 we

present the number of exchanged messages and items during

the simulation time respectively where we notice NIXMIG’s

cost-effective balancing: the number messages does not exceed

700msg/sec (in a 500 node setting) whereas the number of

exchanged keys stays under 1200keys/sec (in a 50K setting).

Finally, the reason that the convergence time is documented to

be larger than that of handling a single pulse is obvious: The

very sudden change in skew forces the invalidation of many

already performed balance operations and nodes with no load

problem suddenly become very overloaded.

Figure 19 shows the progress of the balancing process in

time: First, at time t=800 sec, after 100 sec of balancing time

(recall that NIXMIG started at t=700 sec), just before the query

load changes, we show that NIXMIG is very close to balancing

the load. This is obvious from the improvement shown at

t=850sec, where the old pulse diminishes and the new one

appears. After this point, the newly overloaded nodes start

shedding load to their neighbors (hence the snapshot picture

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

for time t=1000sec). Finally, NIXMIG totally balances load

(last image).

In the following experiment, we utilize the previously

described 12% pulses and we modify the position in the ID-

space of the second pulse along with the time we trigger the

sudden pulse move. At every execution, the initial pulse is

applied over items [10K,16K]. We present our results in Table

4. Each column represents an increase in the second pulse’s

distance from the initial one using a 10% step of 5K keys and

each line an increase in the time we trigger the sudden change

using a step of 20 seconds. We measure the total number of

exchanged items along with the time it took for NIXMIG to

balance both workloads. We notice that as the new pulse’s

distance increases in each column, NIXMIG performs more

key exchanges and takes more time to complete. The same

increase in both metrics is noticeable when, in each row we

increase the time we trigger the second pulse. Nevertheless,

even in the worst case where the second pulse is triggered at

t=820 sec (60 sec later compared to the 760 sec case) and

in the [30K-36K] position (40% further than in the [15-21K]

case), NIXMIG’s performance is not significantly degraded:

only 30% more items are transferred and balancing is 2.2 times

slower compared to the 760 sec and [15-21K] combination.

TABLE 4
Exchanged items and completion time for the dynamic

setting for various trigger times and new pulse positions

Time
Position

[15K-21K] [20K-26K] [25K-31K] [30K-36K]

keys time keys time keys time keys time
760 107K 183 120K 238 125K 303 130K 308
780 109K 201 124K 258 129K 374 132K 315
800 128K 265 129K 268 132K 291 135K 321
820 130K 334 132K 352 138K 380 140K 406

TABLE 5
Ratio of transferred items using SmartRNP vs

RandomRNP and AdversarialRNP for various “hot”
range percentages

ID space % SmartRNP # Ratio of transf. items compared to:
of “hot” range of transf. items RandomRNP AdversarialRNP

10 5.3K 0.47 0.16
20 6.8K 0.52 0.24
30 7.0K 0.59 0.36
40 7.2K 0.66 0.49
50 6.7K 0.71 0.53

5.4 Smart remote node placement mechanism
Next, we study the effect of minimizing the number of

exchanged items during load transfers caused by migrations

by taking into account load skew, as presented in Section 4.2.

More specific, we compare our smart, skew-aware, remote

node placement mechanism (hence SmartRNP) to the random

case (hence RandomRNP) where nodes are randomly placed

and to the situation where an “adversary” places remote

nodes so as to maximize the number of transferred items

(hence AdversarialRNP). As our input workload, we consider

a number of (around twenty) popular ranges in the ID space

for which all keys are requested, whereas all other keys are not

queried at all. We vary the width of each popular range so that

all “hot” ranges occupy from 10% to 50% of the ID space.

In Table 5 we present the effect of SmartRNP for various

workloads (first column): in the second column we depict the

number of exchanged keys due to a MIG operation effectively

minimized by SmartRNP, in the third column we present the

ratio of SmartRNP to RandomRNP key movement and in the

fourth column the ratio of SmartRNP to AdversarialRNP key

movement. We notice that for highly skewed distributions

of 10%, SmartRNP exchanges only 47% items compared to

RandomRNP and 16% compared to the adversarial case, while

this ratio increases (i.e., SmartRNP number of transferred

items gets closer to the number of RandomRNP and Adver-
sarialRNP) for less skewed distributions. This is explained

by Figure 8: the larger the skew, the larger the difference of

|r2−rb| from |r1−rb| making node A’ s decision more critical

for the algorithm’s performance. What is more, we notice that

RandomRNP performs constantly better than AdversarialRNP
(worst case scenario) in terms of transferred items, as with

high probability half of its decisions are “correct” (i.e., they

minimize key transfer).

5.5 NIXMIG in realistic workloads.
TABLE 6

Completion time, number of exchanged messages and
MIG to NIX ratio of NIXMIG for various prefix lengths.

Prefix length time(sec) messages MIG to NIX ratio
4 134 16.4K 0.30
5 140 17.9K 0.32
10 150 18.5K 0.34

In the following experiment we utilize a publicly available

dataset from AOL that contains twenty million queries from

over 650,000 users over a 3-month period2. The dataset

comprises around 3.7 million distinct keywords of varying

popularity which are initially equally divided among 500

nodes. By measuring the number of occurrences of each

keyword in the searches, we calculated the query frequency

distribution: Clients are generating prefix queries of variable

length (e.g., “goo*”, “googl*”, etc) based on the calculated

frequencies. Prefix queries, typically used by search engines to

provide the autocomplete feature among others, are translated

to range queries in our setup. Compared to our previous

reported experiments, nodes now store almost 100 times

more objects ,while the query workload follows a realistic

distribution, with the selectivity of the range queries taking

many possible values.
Table 6 presents the results for variable prefix lengths. In

all cases, NIXMIG balances load fast and under 150 sec, a

result that is well inline with our previous findings (see Section

5.1 – first graphs of Figures 9 and 10). NIXMIG adapts its

operations to the applied workload: When the prefix length

increases, NIXMIG applies more migrations, increasing the

number of exchanged messages and the MIG to NIX ratio.

This happens because the prefix length affects the number of

matched objects and thus the range query size (“goog*” returns

more results than “googl*”). Queries of larger prefix lengths

are served by a smaller number of nodes. Consequently, these

nodes are excessively overloaded and request more migrations

for a faster load alleviation.

2. http://techcrunch.com/2006/08/06/aol-proudly-releases-massive-
amounts-of-user-search-data/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

6 RELATED WORK

DHTs such as Chord [29] tackle load-balancing issues by

applying hash functions to the data, thus destroying their

locality and allowing only exact match queries. The need to

preserve the order of the indexed keys to achieve efficient

lookups in range-queriable structures prevents us from using

simple hash functions to uniformly balance load among nodes.

Therefore, we can categorize the available approaches into two

broad orthogonal groups: data replication and data migration.

Data replication alleviates the overloaded nodes by providing

extra targets for the incoming requests. Data migration re-

quires actual data transfers between nodes in order to balance

load. NIXMIG falls into the data migration category. Data

replication, with its relative advantages and disadvantages, is

applied in conjunction with data migration to further improve

performance and fault tolerance. For instance, one sole replica

of an overloaded node’s items can effectively drop by half

its load (provided that the routing protocol redirects half of

the requests to the replica node) but on the other hand, both

updates and query routing are more difficult to handle.

In the case of peer-to-peer systems, data migration can be

further classified in the node virtualization [9]–[14] and one

ID per server [1], [14]–[21] strategies. In the former, every

actual server can host a number of virtual servers which are

responsible for small disjoint ranges of its items, and balancing

is performed by moving virtual servers between actual ones.

It has been widely used because of its ease of use (virtual

servers can be concurrent threads of a DHT implementation

running on the same machine), but its main drawback is the

increased bandwidth and memory consumption caused by the

maintenance of numerous routing tables (the number of open

network connections gets multiplied by a factor of Ω(logn)
[30]). Godfrey and Stoica [31] tackled this by placing virtual

servers owned by an actual one “near” themselves in the ID

space but they make the assumption that the load is uniformly

distributed in the identifier space, something that does not

always hold in order preserving structures. What is more, it has

been shown that with only one ID per actual server balancing

results are the same as in the case of node virtualization (see

related work of [30]). NIXMIG uses one ID per server.

One ID per server approaches: In the work of Karger

and Ruhl [1] a work-stealing technique is applied: peers

randomly probe distant nodes and compare their loads. If the

load of the less loaded node is smaller than a fraction of

0 < ε < 1
4 of the more loaded node’s load then a migration or

an neighboring item exchange is performed. The drawbacks

of this method were shown in Section 5.1. Moreover, they

do not present analytical results of their algorithm applied to

a distributed system. Ganesan et al [15] propose a balancing

mechanism that works on top of a Skip Graph system [23].

Each node is aware of an ordered set of load thresholds and is

responsible for periodically updating a shared directory with

its current load. When its load crosses a boundary of this

ordered set, it contacts the directory to locate the next more

loaded node and performs load exchange with it. Its main

drawback is the costly maintenance of this load directory.

Aspnes et al [16] propose a second layer on top of a simple

Skip Graph, the buckets layer. Each bucket contains a number

of ordered items and each server may have several buckets.

During balancing procedures, overloaded nodes move buckets

to their immediate neighbors (similar to a NIX operation).

They address skewed data distributions with a list of free

nodes which can migrate in an area to absorb excess load.

The main drawback of this scheme is the requirement of a

list of free nodes: This luxury cannot be considered trivial

in actual deployments. In Mercury [17], probing and node

migration is used to solve load balancing problems. Nodes

use a random sampling procedure with probe messages to

calculate the average network load. When their load is above

or below the average network load, they initiate balancing

actions. The authors state that their load balancing scheme

is similar to IB [1]: their only difference is that they minimize

flooding during probing as they perform a clever and selective

way of disseminating load information. Similar to Mercury

is the HiGLOB framework [18]: each node maintains a list

of load information about non-overlapping regions of the key

space, and if it detects imbalances, it performs load exchanges

following the IB paradigm. In Armada [14], load balancing is

performed with a hash function responsible for placing items

into nodes that knows in advance the distribution of items

in the ID space. Armada can handle only static workloads,

unlike NIXMIG’s ability to deal with dynamic workloads.

Shen and Xu [19], [20] maintain matchings of overloaded to

underloaded peers: balancing is performed by moving “hot”

items and placing doubly-linked pointers both to the source

(overloaded peer) and the destination (underloaded peer) of

the moved item. The drawback of this method is that during

lookups the overloaded peer will still be contacted, as it is

still responsible for this “hot” item. In chordal graphs [21]

balancing is performed by a process called “free drifting”

which is actually a NIX operation that has the disadvantages

described in Section 5.1.

Node virtualization approaches: The idea of virtual

servers for load balancing in peer-to-peer systems was

initially proposed in CFS [9]. Based on this idea, Rao et al

[10] proposed three load balancing algorithms (One to One,

One to Many, and Many to Many) which were extended by

Surana et al [11] for heterogeneous peer to peer systems with

churn. In the first case, an overloaded node contacts one node

at random (as in the work of Karger and Ruhl [1]) while in

the second case it contacts numerous nodes before it takes a

balancing decision. The third case is similar to the approach

used by Ganesan et al [15]: a distributed directory with load

information is maintained and contacted by overloaded peers

before any balancing decision is taken. Zhu and Hu [12] also

build and maintain a distributed load directory in the form

of a k-ary tree structure that is stored in the overlay. This

directory is used by nodes to detect load imbalances and to

find suitable overloaded-underloaded node pairs. Chen and

Tsai [13] use the general assignment problem (a particular

case of a linear programming problem) to assign virtual to

actual nodes: they make an initial estimation using the ant

system heuristic which afterwards is refined using the descent

local search algorithm. This procedure is iteratively applied

until a solution is reached. In Armada [14], the authors use

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

virtual servers for balancing purposes but they do not provide

details about their specific implementation.

7 CONCLUSIONS

In this paper, we evaluate the performance in terms of

bandwidth cost and convergence speed of balancing range

queriable data structures using successive item exchanges and

node migrations. Our theoretical analysis and extensive exper-

imental results show that none of these methods by itself is

capable of efficiently balancing arbitrary workloads: Neighbor

item exchanges are expensive in terms of item transfers and

slow in terms of convergence speed, whereas node migrations

are fast but costly in terms of message exchange. Our method,

NIXMIG, is a hybrid approach that adaptively decides the

appropriate balancing action and provably converges to a

balanced state. Load moves in a “wave-like” fashion until it

is absorbed by underloaded nodes, while node migration is

triggered only when necessary. Our results show that NIXMIG
can be three times faster, while requiring only one sixth

and one third of message and item exchanges respectively

compared to an existing load balancing algorithm proposed

by Karger and Ruhl [1] to bring the system in a balanced state

under a variety of skewed, dynamic and realistic workloads.

REFERENCES

[1] D. R. Karger and M. Ruhl, “Simple Efficient Load-Balancing Algorithms
for Peer-to-Peer Systems,” Theory of Computing Systems, vol. 39, pp.
787–804, Nov. 2006.

[2] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon, “I Tube, You
Tube, Everybody Tubes: Analyzing the World’s Largest User Generated
Content Video System,” in 7th ACM SIGCOMM conference on Internet
measurement, 2007.

[3] S. Sen and J. Wong, “Analyzing peer-to-peer traffic across large net-
works,” in SIGCOMM Internet Measurements Workshop, 2002.

[4] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash Crowds and
Denial of Service Attacks: Characterization and Implications for CDNs
and Web Sites,” in WWW, 2002.

[5] Y. Vigfusson, A. Silberstein, B. F. Cooper, and R. Fonseca, “Adaptively
Parallelizing Distributed Range Queries,” in VLDB, 2009.

[6] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-Peer Support for
Massively Multiplayer Games,” in Infocom, 2004.

[7] Q. Luo and J. F. Naughton, “Form-based proxy caching for database-
backed web sites,” in VLDB, 2001, pp. 191–200.

[8] S. Y. Lee, T. W. Ling, and H.-G. Li, “Hierarchical Compact Cube for
Range-Max Queries,” in VLDB, 2000, pp. 232–241.

[9] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-
area cooperative storage with CFS,” ACM SIGOPS Operating Systems
Review, vol. 35, no. 5, pp. 202–215, 2001.

[10] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load
Balancing in Structured P2P Systems,” in IPTPS, 2003, pp. 68–79.

[11] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and I. Stoica,
“Load Balancing in Dynamic Structured Peer-to-Peer Systems,” Perfor-
mance Evaluation, vol. 63, no. 3, pp. 217–240, 2006.

[12] Y. Zhu and Y. Hu, “Efficient, Proximity-Aware Load Balancing for DHT-
based P2P Systems,” IEEE Trans. Parallel and Distributed Systems,
vol. 16, no. 4, pp. 349–361, 2005.

[13] C. Chen and K. Tsai, “The Server Reassignment Problem for Load Bal-
ancing in Structured P2P Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 19, no. 2, pp. 234–246, 2008.

[14] D. Li, J. Cao, X. Lu, and K. Chen, “Efficient Range Query Processing in
Peer-to-Peer Systems,” IEEE Trans. Knowledge and Data Eng., vol. 21,
no. 1, pp. 78–91, 2009.

[15] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online Balancing of
Range-Partitioned Data with Applications to Peer-to-Peer Systems,” in
VLDB, 2004, pp. 444–455.

[16] J. Aspnes, J. Kirsch, and A. Krishnamurthy, “Load Balancing and
Locality in Range-Queriable Data Structures,” in ACM PODC, 2004,
pp. 115–124.

[17] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
Scalable Multi-Attribute Range Queries,” ACM SIGCOMM Computer
Communication Review, vol. 34, no. 4, pp. 353–366, 2004.

[18] Q. H. Vu, B. C. Ooi, M. Rinard, and K. L. Tan, “Histogram-Based
Global Load Balancing in Structured Peer-to-Peer Systems,” IEEE
Trans. Knowledge and Data Eng., vol. 21, no. 4, pp. 595–608, 2009.

[19] H. Shen and C. Z. Xu, “Locality-Aware and Churn-Resilient Load-
Balancing Algorithms in Structured Peer-to-Peer Networks,” IEEE
Trans. Parallel and Distributed Systems, vol. 18, no. 6, pp. 849–862,
2007.

[20] H. Shen and C. Xu, “Hash-based Proximity Clustering for Efficient Load
Balancing in Heterogeneous DHT Networks,” Journal of Parallel and
Distributed Computing, vol. 68, no. 5, pp. 686–702, 2008.

[21] Y. J. Joung, “Approaching Neighbor Proximity and Load Balance for
Range Query in P2P Networks,” Computer Networks, vol. 52, no. 7, pp.
1451–1472, 2008.

[22] I. Konstantinou, D. Tsoumakos, and N. Koziris, “Measuring the Cost
of Online Load–Balancing in Distributed Range–Queriable Systems,” in
IEEE P2P, 2009, pp. 135–138.

[23] J. Aspnes and G. Shah, “Skip Graphs,” ACM Trans. Algorithms, vol. 3,
p. 37, 2007.

[24] P. Berenbrink, T. Friedetzky, and Z. Hu, “A New Analytical Method
for Parallel, Diffusion-Type Load Balancing,” J. Par. Distrib. Comp.,
vol. 69, no. 1, pp. 54–61, 2009.

[25] G. Cybenko, “Dynamic Load Balancing for Distributed Memory Mul-
tiprocessors,” J. Par. Distrib. Comp., vol. 7, no. 2, pp. 279–301, 1989.

[26] B. Ghosh and S. Muthukrishnan, “Dynamic Load Balancing by Random
Matchings,” Journal of Computer and System Sciences, vol. 53, no. 3,
pp. 357–370, Dec. 1996.

[27] C. Damgaard and J. Weiner, “Describing Inequality in Plant Size or
Fenducity,” Ecology, vol. 81, no. 4, pp. 1139–1142, 2000.

[28] T. Pitoura, N. Ntarmos, and P. Triantafillou, “Replication, Load Balanc-
ing and Efficient Range Query Processing in DHTs,” in EDBT, 2006,
pp. 131–148.

[29] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions,” SIGCOMM Comput. Commun. Rev., vol. 31, pp. 149–160, 2001.

[30] G. S. Manku, “Balanced Binary Trees for ID Management and Load
Balance in Distributed Hash Tables,” in PODC, 2004, pp. 197–205.

[31] P. B. Godfrey and I. Stoica, “Heterogeneity and Load Balance in
Distributed Hash Tables,” in INFOCOM, vol. 1, 2005, pp. 596–606.

Ioannis Konstantinou currently works at the
Computing Systems Laboratory of the Depart-
ment of Electrical and Computer Engineering
of NTUA, where he is pursuing his Ph.D. in
the field of Distributed Systems, Peer to Peer
technologies and Cloud Computing. He received
his Diploma in Electrical and Computer Engi-
neering from the National Technical University of
Athens (NTUA) in 2004 and his M.Sc. in Techno-
Economic Systems from NTUA in 2007.

Dimitrios Tsoumakos currently holds a senior
researcher position in the Computing Systems
Laboratory of the Department of Electrical and
Computer Engineering of the National Technical
University of Athens (NTUA). He received his
Diploma in Electrical and Computer Engineering
from NTUA in 1999, joined the graduate program
in Computer Sciences at the University of Mary-
land in 2000, where he received his M.Sc. (2002)
and Ph.D. (2006).

Nectarios Koziris Associate Professor, NTUA.
His research interests include parallel architec-
tures, scalable distributed systems and data &
resource management for large scale Internet
systems. He has published more than 90 papers
in international journals and in the proceedings
of international conferences. Nectarios Koziris
is a recipient of the IEEE IPDPS 2001 best
paper award. He served as a Chair and Pro-
gram Committee member in various IEEE/ACM
conferences. He is a member of IEEE, senior

member of ACM and chairs the Greek IEEE CS Chapter. He also serves
as the Vice-Chairman for the Greek Research and Education Network.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

