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ABSTRACT
NoSQL databases focus on analytical processing of large
scale datasets, offering increased scalability over commodity
hardware. One of their strongest features is elasticity, which
allows for fairly portioned premiums and high-quality per-
formance and directly applies to the philosophy of a cloud-
based platform. Yet, the process of adaptive expansion and
contraction of resources usually involves a lot of manual ef-
fort during cluster configuration. To date, there exists no
comparative study to quantify this cost and measure the
efficacy of NoSQL engines that offer this feature over a
cloud provider. In this work, we present a cloud-enabled
framework for adaptive monitoring of NoSQL systems. We
perform a thorough study of the elasticity feature on some
of the most popular NoSQL databases over an open-source
cloud computing platform. Based on these measurements,
we finally present a prototype implementation of a decision
making system that enables automatic elastic operations of
any NoSQL engine based on administrator or application-
specified constraints.

1. INTRODUCTION
Computational and storage requirements of applications

such as web analytics, business intelligence and social net-
working over tera- (or even peta-) byte datasets have pushed
sql-like centralized databases to their limits [12]. This led to
the development of horizontally scalable, distributed non-
relational data stores, called NoSQL databases. Google’s
Bigtable [13] and its open-source implementation HBase [6],
Amazon’s Dynamo [15], Facebook’s Cassandra [20], and Lin-
kedIn’s Voldemort [8] are a representative set of such sys-
tems. NoSQL systems exhibit the ability to store and in-
dex arbitrarily big data sets while enabling a large amount
of concurrent user requests. They are perfect candidates
for cloud platforms that provide infrastructure as a service
(IaaS) such as Amazon’s EC2 [2] or its open-source alter-
natives such as Eucalyptus [24] and OpenStack [7]: NoSQL
administrators can utilize the cloud API to throttle the num-
ber of acquired resources (i.e., number of virtual machines
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– VMs and storage space) according to application needs.
This is highly-compatible with NoSQL stores: Scalabil-

ity in processing big data is possible through elasticity and
sharding. The former refers to the ability to expand or con-
tract dedicated resources in order to meet the exact demand.
The latter refers to the horizontal partitioning over a shared-
nothing architecture that enables scalable load processing.
It is obvious that these two properties (henceforth referred to
as elasticity) are intertwined: as computing resources grow
and shrink, data partitioning must be done in such a way
that no loss occurs and the right amount of replication is
conserved.

Many NoSQL systems (e.g., [6, 15, 20, 8, 9]) claim to
offer adaptive elasticity according to the number of partici-
pant commodity nodes. Nevertheless, the“throttling”is usu-
ally performed manually, making availability problems due
to unanticipated high loads not infrequent (e.g., the recent
Foursquare outage [17]). Adaptive frameworks are offered
by major cloud vendors as a service through their infrastruc-
ture: Amazon’s SimpleDB [3], Google’s AppEngine [5] and
Microsoft’s SQL Azure [11] are proprietary systems provided
through a simple REST interface offering (virtually) unlim-
ited processing power and storage. However, these services
run on dedicated servers (i.e., no elasticity from the vendor’s
point of view), their internal design and architecture is not
publicly documented, their cost is sometimes prohibitive and
their performance is questionable [19].

A number of recent works has provided interesting insights
over the performance and processing characteristics of var-
ious analytics platforms (e.g., [19, 25, 14]), without dealing
with elasticity in virtualized resources, which is the typi-
cal case in cloud environments. The studies presented in
[16, 22, 29] deal with this feature but do not address No-
SQL databases, while [21] is file-system specific. Finally,
proprietary frameworks such as Amazon’s CloudWatch [1]
or AzureWatch [4] do not provide a rich set of metrics and
require a lot of manual labor to be applicable for NoSQL
systems. Thus, although both NoSQL and cloud infrastruc-
tures are inherently elastic, there exists no actual study to
report how effective this is in practice, at least over architec-
turally different engines. To the best of our knowledge, there
also exists no actual system that combines these two tech-
nologies to offer automated NoSQL cluster resize according
to dynamic workload changes.

Our work aims to bridge this gap between individual im-
plementations and practice. Having reviewed the major-
ity of open-source NoSQL solutions (including considerable
hands-on experience with many of them) and the Eucalyp-
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Figure 1: Architecture of our Cloud-based NoSQL
elasticity-testing framework.

tus IaaS [24], our task is to design and deploy a distributed
framework that allows (in a customizable and automated
manner) any NoSQL engine to expand or contract its re-
sources by using a cloud management platform. Specifically,
in this work we perform a thorough study that presents the
following tangible contributions:
• Utilizing a VM-based measurement framework, we are

able to provide a generic control module that monitors
NoSQL clusters. We then identify how each metric of in-
terest (CPU, Memory usage, Network, etc) varies under
workloads of various types (reads, writes, updates) and
rates.
• We document the costs and gains after a cluster resize.

Specifically, using both client and cluster-based metrics,
we register the performance gains when increasing the size
of the cluster in varying workloads. We also measure the
cost in terms of time delay and describe the performance
degradation at all stages of adding or deleting a new VM.
• Based on our findings, we demonstrate the applicability

of our framework by presenting a prototype implementa-
tion of our system that allows for adaptive cluster resize
without any human involvement.

Taking advantage of our experience in building and operat-
ing this platform, this work may also be used as an invalu-
able guide to technical issues such as: Automatic VM setup
and configuration, NoSQL tuneup and glitches, implemen-
tation shortcomings and best workload practices.

To achieve maximum result generalization and show our
framework’s modularity, we incorporate three popular No-
SQL implementations, HBase [6], Cassandra [20] and Riak
[9] that support elasticity and also offer an acceptable level of
development support required. The same hold for the choice
of the open-source client [14] our system incorporates.

The remainder of this paper is organized as follows: the
basic system architecture is presented in Section 2. Section 3
presents a brief description of the supported NoSQL systems
and their elasticity features. Our experimental results are
detailed in Section 4, related work is presented in Section
5 and Section 6 contains a thorough analysis of our find-
ings, design decisions and recommendations, while Section
7 concludes our work.

2. ARCHITECTURE
Our elasticity-testing framework, an open-source project1

1download address omitted for double-blind reviewing

with over 2K lines of Python code, features an architec-
ture that is illustrated in Figure 1. The Command Issuing
module is used to initiate a cluster resize operation. It in-
teracts with the Cloud Management module that contacts
the cloud vendor to adjust the cluster’s physical resources
by releasing or acquiring more virtual machines. The Re-
balancing module makes sure that newly arrived nodes join
the cluster contributing an equal share of the work. The
Cluster Coordinator module executes higher level add, re-
move and rebalance commands according to the particular
NoSQL system used. Finally, the Monitoring module main-
tains up-to-date performance metrics that collects from the
cluster nodes. Below we describe each module in more de-
tail:
Command Issuing Module: This is the ‘coordinator’
module. In the current implementation phase, this mod-
ule requests addition or removal of a number of VMs using
the Cloud Management and Cluster Coordinator modules.
Monitoring Module: Our system takes a passive monitor-
ing approach. Currently, it receives data from Ganglia [23],
a scalable distributed system monitoring tool that allows the
user to remotely collect live or historical statistics (such as
CPU load averages, network, memory or disk space utiliza-
tion) through its XML API and present them through its
web front-end via real-time dynamic web pages. Apart from
general operating-system statistics, Ganglia may also gather
NoSQL performance metrics such as the current number of
open client threads, number of served operations per second,
etc.
Rebalancing Module: The rebalancing module is acti-
vated after a newly arrived virtual machine from the cloud
vendor has successfully started (i.e., has booted and re-
ceived a valid IP). When this happens, the module executes
a “global rebalance” operation, in which client requests are
spread equally among the cluster nodes according to the spe-
cific NoSQL implementation and semantics.
Cloud management: Our system interacts with the cloud
vendor using the well known euca-tools, an Amazon EC2
compliant REST-based client library. The command issuing
module interacts with this module when it commands for a
resize in the physical cluster resources, i.e., the number of
running VMs. Our cloud management platform is a private
Eucalyptus [24] installation. The use of euca-tools guaran-
tees that our system can be deployed in Amazon’s EC2 or in
any EC2-compliant IaaS cloud. We have created an Amazon
Machine Image (AMI) that contains pre-installed versions of
the supported NoSQL systems along with the Ganglia mon-
itoring tool.
Cluster coordinator: The coordination of the remote VMs
is done with the remote execution of shell scripts and the
injection of on-the-fly created NoSQL specific configuration
files to each VM. A higher level “start cluster”, “add NoSQL
node”and“remove NoSQL node”command is translated in a
workflow of the aforementioned primitives. Our framework
implementation makes sure that each step has succeeded be-
fore moving to the next one.

For instance, the Command Issuing module requests an
“add virtual machine” command using the euca-tools API
and waits until it is started and has been assigned with an
IP. After this, the Cluster Coordinator creates the appro-
priate configuration scripts on-the-fly, transfers them to the
new VM, and remotely starts the NoSQL service along with
the Ganglia tool. The Rebalancer module inserts the node to



the cluster and rebalances client requests among the server
nodes. On a another instance, when the decision dictates
for node deletion, the Cluster Coordinator is instructed to
remove it from the cluster calling the “terminate instance”
command of the Cloud Management. Data loss during node
removal is avoided with the use of NoSQL data replication.
In this case, NoSQL systems transparently replicate the re-
moved data in order to maintain the replication factor.

Our framework currently incorporates three popular No-
SQL systems that implement rebalancing operations: HBase,
Cassandra and Riak (for an overview of these systems, re-
fer to Section 3). Yet, the system is extensible enough to
include more engines that support elastic operations by im-
plementing the system’s abstract primitives in the Cluster
Coordinator module and by including the system’s binaries
to the existing AMI virtual machine image. The precooked
virtual machine image is available for download from the
project’s web site.

3. NOSQL OVERVIEW
This section provides a short overview of the three NoSQL

engines incorporated so far in our framework. In particular,
we focus on key architectural characteristics, behaviour and
advantages, as these features shed light into many of the
results that follow.

3.1 HBase
HBase is a Bigtable-like structured store that runs on top

of the Hadoop Distributed File System (HDFS). Both HBase
and Hadoop implement a centralized master-slave architec-
ture. HBase has an HMaster node that keeps track of the
various cluster nodes (RegionServers) that serve client re-
quests. Data is divided into regions allocated to the Re-
gionServers by HMaster and reside, normally, on the local
HDFS DataNode. When regions grow above a user-defined
limit, they are split in half. Incoming data is cached until
a pre-configured size is reached at which point a flush to
disk creates a new file. Once the number of newly written
files exceeds a configurable threshold a minor compaction is
performed. In contrast, a major compaction is scheduled at
regular intervals that consolidates all files.

A load balancer is triggered periodically aiming to balance
the cluster load by migrating regions as required. Cluster
synchronization is accomplished thanks to Zookeeper, a dis-
tributed coordination service. Clients contact the Zookeeper
to retrieve the node hosting the necessary metadata for lo-
cating the RegionServer that owns the corresponding region.
Data replication is supported, with the default factor set to
3. HBase inherits a strong level of consistency from HDFS.
In the event of new nodes joining the cluster, they are used
for storing any new data in the system. Data are not redis-
tributed by default but a load rebalancing can be forced.

3.2 Cassandra
Cassandra is a Dynamo-inspired system that follows Big-

table’s data model [10]. Nodes form a DHT ring with each
node holding a specific partition of the key-space and serving
as a contact point. New nodes entering the ring are assigned
a partition of the data stored in the cluster, namely, half the
key-space of the node with the largest partition is transferred
to it. Therefore, no more than the number of nodes present
in the ring can be inserted at the same time. Data is repli-
cated for fault-tolerance, with the default replication factor

being equal to 3. Cassandra is optimized for fast write op-
erations. There exist five levels of consistency available for
every operation executed. Eventual consistency can favour
fast writes whereas strong consistency can be achieved if
needed.

3.3 Riak
Similarly to Cassandra, Riak is strongly influenced by the

Dynamo paper [9]. Featuring a DHT architecture, Riak
focuses on scalability and high availability supporting ad-
justable data replication for durability (the default replica-
tion factor is 3) and tunable levels of consistence. Data
rebalancing is handled automatically as soon as new nodes
enter the ring, aiming in dividing data partitions into equal
shares and distributing them amongst nodes.

4. EXPERIMENTAL RESULTS
Our experimental setup consists of a Eucalyptus 2.0.0 pri-

vate cluster of 16 Node controllers and a single machine in
the role of Cloud and cluster controller. We were allocated
enough resources for a cluster of 20 client VMs (load gen-
erators) and 28 server VMs. Each server VM has a 4 vir-
tual core processor with 8GB of RAM and 50GB of storage
space, while client VMs have 2 virtual CPUs and 4GB of
RAM. Cluster peers store their data into their root file sys-
tem, i.e., no external Elastic Block Storage (EBS) is used.
The versions of Hadoop and Ganglia used are 0.20.2 and
3.1.2 respectively, both in their default configuration.

Clients and workloads used: We utilize fixed HBase
(v. 0.20.6) Cassandra (v. 0.7.0 beta) and Riak (v. 0.14.0)
initial cluster sizes of 8 nodes which are loaded with 20 mil-
lion objects (i.e., 20GB of plain raw data, since each item
takes up 1KB) by utilizing the YCSB [14] load function.
Every database is configured with a replication factor of 3,
which in the case of Cassandra, HBase and Riak results in
a total database size of about 60GB, 90GB and 105GB re-
spectively (HBase and Riak use more metadata per record).
Since HBase and Cassandra are written in java and they
were setup for production mode, a generous heap space of
6GB was supplied. For the most part, all database systems
were setup using their default settings, as presented in their
online manual pages. The only deviation from this rule is
Cassandra’s auto_bootstrap parameter, which was set to
false, as it effectively prevents adding more nodes to the
cluster ring than the number of already participating nodes.

Our default workload for use through the YCSB tool is a
straightforward random uniform read, varying λ appropri-
ately, where λ is the number of active threads of the YCSB
tool. YCSB uses two parameters, the number of threads per
client and the target number of operations per second they
will try to achieve. Consequently, λ defines the number of
concurrent pending operations at every time point. In our
experiments, we pose a sufficient number (2M to 10M) of
simple get queries that collectively cover a significant part
of the dataset (10% to 50%).

Although YCSB comes with a set of workloads that sim-
ulate real-world conditions, we use 4 consistent workloads
(namely UNIFORM READ, ZIPFIAN READ, UNIFORM-
UPDATE and UNIFORM RMW) in order to better under-

stand the behaviour of the databases for different types of
load. These correspond to simple (i.e., not composite) work-
loads, where all operations are of the defined type, that is
uniform random reads, zipfian random reads, uniform ran-
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Figure 2: CPU-RAM usage and mean query throughput-latency for various λ query rates of the UNI-
FORM READ workload for an HBase-Cassandra Cluster of 8 nodes.

dom updates and uniform random read-modify-writes re-
spectively.

Our evaluation conforms to the following methodology:
First, we plan to identify the performance metrics that are
affected under heavy load of concurrent requests and vari-
ous workload types. In the second phase, we plan to iden-
tify the cost and performance gain/loss cost after cluster
resize for various workloads and resize choices. Finally, tak-
ing advantage of our findings, we present a prototype, fully
automated system setup where the command issuing mod-
ule monitors the appropriate performance metrics and adap-
tively adds/removes the desired amount of resources in order
to keep the cluster within some user-defined limits.

4.1 Metrics affected during stress-testing
In the first set of experiments, we measure how a num-

ber of metrics is affected under variable load. We are in-
terested both in generic, server-side metrics (i.e., CPU load
and memory usage) and application-specific, client-side ones
(i.e., query throughput and mean query latency), varying
the aggregate query rate as well as the workload type. Fig-
ure 2 presents the results for four metrics, two reported by
YCSB (throughput and latency) and two by Ganglia (CPU
and Memory usage) for values of aggregate λ up to 280
Kreqs/sec.

Considering Riak, the 8-node cluster could not accommo-
date such big rates of λ. Riak was able to achieve an aver-
age throughput of 10 Kreqs/sec for an 8-node cluster, which
fully complies with previously reported performance mea-
surements2. Yet, above this rate, extra requests are dropped
and Riak servers become unresponsive. Thus, we were un-
able to directly compare Riak with HBase and Cassandra,
limiting its participation to the data rebalancing experiment
in Section 4.3.

The maximum throughput for the other two databases can
be derived from the first graph of Figure 2. We notice that
HBase achieves a maximum aggregate throughput of about
80 Kreqs/sec at λ ' 80 Kreqs/sec, while Cassandra achieves
its maximum throughput of 13K at λ ' 20 Kreqs/sec. The
variation of the CPU load as perceived from the cluster
seems in accordance with the client-perceived throughput.
The maximum usage is a bit over 55% (aggregated over the
whole server cluster) for HBase and ' 76% for Cassandra,
with the load remaining constant henceforth. As seen in
both experiments, increasing λ further has no effect, as both
systems are fully utilized. Thus, further arriving requests are
simply queued, to be answered later by the system, resulting
in mostly flat CPU and throughput curves.

In terms of memory usage, the HBase cluster uses a con-

2http://bit.ly/lEpqWC

Table 1: CPU-RAM usage and mean query
throughput-latency under different workload types
with a fixed query rate of λ = 180 Kreqs/sec for an
HBase-Cassandra Cluster of 8 nodes.hhhhhhhhhhhWorkload

Metric CPU MEM Thr/put Latency
(%) (GB) (Kreqs/sec) (sec)

HbCassHbCass Hb Cass HbCass
Uniform READ 55 73 17 48 75.5 9 3.9 18.7
Zipfian READ 55 68 17 28 77.4 8.6 1.4 18.4
UPDATE 45 74 24 36 30.4 12.2 4.1 10.8

stant 17 GB of memory while Cassandra seems to take up
more memory as the load increases. This could be due to the
fact that Cassandra, unlike HBase, has no central node that
directs the clients to the appropriate server to get a partic-
ular tuple. The server responsible is reached after search-
ing the ring and returns the tuple to the client. This pro-
cess can create several cached results. To force a memory
cleanup, a restart of the cluster is necessary, which results in
an original memory usage of 5 GB. Finally, in terms of the
average read latency per query, HBase predictably outper-
forms Cassandra. Both systems exhibit a linear increase in
the client-side perceived latency with Cassandra’s rate be-
ing noticeably higher. The linearly increasing latency curves
can be explained from pending server requests which have
to wait more since λ increases but the throughput remains
constant.

Having determined the way the metrics were affected dur-
ing the uniform reads for variable λ, we monitor the steady
state values of these metrics for different types of work-
loads. In Table 1, we present the relevant results for a value
λ = 180 Kreqs/sec. As shown, the average CPU and RAM
usage is almost identical for HBase for uniform and zipfian
read workloads, while average CPU usage slightly decreases
in the case of updates. Cassandra on the other hand ex-
hibits more variation between uniform and zipfian read, with
zipfian read producing lower CPU load and memory usage.
Update operations produce slightly more load but are less
heavily dependent on memory. In all cases, Cassandra uses
more memory and produces significantly more CPU load
than HBase. In terms of average throughput and latency,
HBase outperformed Cassandra for short term experiments,
even in the case of updates.

4.2 Cost of adding and removing nodes
The cost of adding or removing nodes in a NoSQL cluster

is mostly measured in time and can be divided in four parts:
VM initialization: Launching new virtual machines takes

a significant part of the addition phase. Even when the
virtual machine image is cached on the VM container, the
VM is available after about 3 minutes, allowing for OS boot

http://bit.ly/lEpqWC


time and DHCP negotiation. However, multiple node addi-
tion can be done in parallel on multiple VM containers even
when multiple VMs are launched on the same container.
This means that the previously reported time remains con-
stant. VM removal is done instantaneously (i.e., in less than
10 secs), since it is a much more straightforward operation
for the cloud management system.

Node reconfiguration: This phase involves the creation
of various configuration files and their propagation to all
nodes on the cluster. This is necessary because in both
existing and new nodes the configuration files should match
and because there are a number of settings that have to
be available on both new and existing nodes (for example,
hard coded domain name resolution effected by altering the
/etc/hosts file of all nodes). Given the automatic nature
of these changes and the fact that configuration files are
usually small in size, completing this phase takes at most 30
seconds even for large cluster sizes. This phase is necessary
during node addition as well as during node removal.

Region rebalancing: This part of the addition/removal
process involves the necessary time for the new nodes to
become actual serving parts of the cluster. This consists
of the time consumed by launching the services/daemons
using the database’s default scripts, the time for the new
node to become active during addition and the time for the
data regions to be allocated to each new node during ad-
dition or to an old node during removal. The total time
for HBase could vary depending on the number of new or
removed nodes and the amount of regions, but in our exper-
iment we have measured times of at most 2 minutes. Given
the distributed nature of Cassandra and Riak, the time to
add/remove new nodes to the ring is at most 30 seconds
irrespective of database size.

Data rebalancing: Data rebalancing is expensive in
terms of extra load on the servers and the network infras-
tructure. It also invalidates data blocks while operations are
performed on the cluster as we have witnessed in our tests.
HBase and Cassandra can add nodes to the cluster without
moving the relevant data. The operational correctness in
this case is achieved through the distributed HDFS filesys-
tem in HBase’s case and through extra hops in Cassandra’s
case. In Riak, data rebalancing cannot be avoided when
bringing new nodes online. This operation, in any case, de-
pends heavily on the amount of data that have to be moved,
the number of pre-existing nodes and the number of new
nodes that have to fetch the existing data. This means that
all cases would have to be treated individually. However,
a relevant test outlining performance gains and time costs
is presented in Section 4.3. In general, in the rebalancing
tests we performed, we observed erratic cluster behaviour
and large time costs.

4.3 Cluster resize performance measurements
Our first concern on the costs and gains of a resize oper-

ation relates to the rebalancing of the database data. Since
data rebalancing is by itself a resource intensive procedure,
we only perform node additions and data migration in an
idle cluster for this case, i.e., without applying extra client
workload. This scenario is valid, since data rebalancing is
usually scheduled for off-peak time periods. Nevertheless, in
our experiments conducted with extra client workload dur-
ing data rebalance, all systems exhibited erratic behaviour,
and never reached the performance in throughput or la-

Table 2: Completion time, total moved data, final
average query throughput and latency for a 8+8
node cluster resize operation in HBase, Cassandra
and Riak with and without data rebalancinghhhhhhhhhhhMetric

Cluster
HBase Cassandra Riak

Reb No Reb No Reb
Completion time (min) 98 5 665 5 150

Data moved (GB) 22.5 - 87.7 - 44.8
Througput (Kreqs/s) 154.5 129.6 18.3 14.9 18

Avg. Latency (s) 0.7 1.1 7.1 9.3 0.2

tency of the initial cluster before the resize operation. Even
worse, disconnects and inconsistencies were propagated to
the clients, resulting in a significant number of exceptions.

In Table 2 we present our results for an original examina-
tion of the costs and gains of data rebalancing for HBase,
Cassandra and Riak. We have started an 8-node cluster in
each case and added 20M tuples. After the data insertion,
we expand each cluster by adding 8 more nodes, let the sys-
tems stabilize without performing data rebalance and apply
a UNIFORM READ workload with a λ = 180 Kreqs/sec.
These results are depicted in the “No” column for every
database (for Riak that rebalances data automatically as
soon as a new node joins the ring, this is not applicable).
After this, we perform a manual data rebalancing opera-
tion in HBase (through the HDFS balancer3) and Cassandra
(through loadbalance commands4). When data rebalanc-
ing finishes, we apply a UNIFORM READ workload with a
λ = 180 Kreqs/s for HBase, Cassandra and 18 Kreqs/s for
Riak (Riak could not operate with a higher workload). The
results for this setup are presented in the “Reb” column for
every database.

As can be deduced from Table 2, the data rebalancing
costs far outweigh its benefits for the cases of HBase and
Cassandra. For HBase, which also required a restart of
the whole cluster that took about 4 minutes, a net gain
of about 20% in throughput (154.5 Kreqs/sec balanced vs
129.6 Kreqs/sec not balanced) was achieved compared to a
non-rebalanced 16 node cluster, which could be easily offset
by adding two extra nodes without using data rebalancing.
In Cassandra’s case, the results were better with a net gain
of 22% for the average throughput (18.3 Kreqs/sec vs 14.9
Kreqs/sec for a non balanced 16 node cluster). In terms
of latency, similar performance benefits were achieved (33%
and 23% for HBase and Cassandra respectively). The data
moved during data rebalancing for HBase are roughly 22 GB
or 25% of the entire dataset. In Cassandra’s case, a much
larger number of 87.7 GB of data are moved, which trans-
lates to the whole dataset. HDFS’s centralized balancer is
more advanced than Cassandra’s when deciding how many
data blocks to move to the new nodes since it tries to min-
imize the moved data by taking into account replica loca-
tions. Although this leaves the cluster unbalanced in terms
of disk usage, it allows a rebalancing operation to complete
in much less time than Cassandra. Cassandra, on the other
hand, by halving the ID space of a pre-existing node and
assigning it to the newly arrived one, uses a more naive but
decentralized approach to balance the cluster, moving more
data.

As far as Riak is concerned, rebalancing is also a costly

3http://bit.ly/iCNsbF
4http://bit.ly/kEZZFI
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Figure 3: Query latency, query throughput and CPU usage per time for an HBase cluster of 8 nodes after
adding 8 and 16 more nodes for the UNIFORM READ and UNIFORM UPDATE workload with a query
rate of λ = 180 Kreqs/sec

operation both in time, taking 150 minutes to complete in
our experiment, and in network bandwidth since 44.8 GB
(or 43% of the entire dataset) were transferred to the newly
added nodes.

Given the large time costs for data rebalancing operations
(93, 660 and 150 minutes in HBase, Cassandra and Riak re-
spectively), and the fact that the benefits can be outweighed
by adding more nodes without data migration with a fixed
time cost of 5 minutes for each database (see the following
results), we conclude that gains do not outweigh costs when
aiming for the highest degree of elasticity. Therefore, sub-
sequent tests were run without performing data rebalancing
operations.

We continue our evaluation of the gains in performance
when adding nodes under varying workloads without data
rebalancing for HBase and Cassandra. Our results describe
the behaviour of an 8-node cluster under varying workloads
after the addition of a variable number of nodes. We uti-
lize a YCSB-generated load of λ = 180 Kreqs/sec, which,
as previously shown, is well over the maximum load that
both Cassandra and HBase can efficiently handle. Two
types of workloads are used, UNIFORM READ and UNI-
FORM UPDATE (referred to as READ and UPDATE hence-
forth). For each combination of workload and database, we
perform an addition of 8 (i.e., double the size) and 16 (i.e.,
triple the size) nodes. The cluster resize occurs at about
t = 370 sec (shown in Figures 3 and 4 as a vertical line). The
client-side query latency and throughput µ are measured as
well as the total aggregate cluster CPU usage reported by
the Ganglia tool. As we have shown, CPU usage is highly
indicative of the cluster’s status.

Figure 3 presents our results concerning the HBase cluster.
Legends refer to the workload type along with the resizing
action (e.g., READ+8 represents a read workload with an 8-
node resize). With read operations being faster than writes,
we achieve comparable run times by adjusting the amount
of objects requested in each workload, i.e., 10M in READ
and 4M in UPDATE. The first graph plots present the mean
query latency. Adding nodes during READ loads (READ+8
and READ+16) has a transient negative effect on the query
latency, attributed to the fact that HMaster reassigns ta-
ble regions to the new nodes as soon as the resize occurs.
Although data is not actually moved (as explained in sec-
tion 3.1), this reassignment poses an extra burden to the
already overloaded cluster. Clients cache region locations
which however change during cluster resizing. As a result,
latency increases due to client cache misses. Nevertheless,
this effect lasts for around 4-5 minutes when adding 8 nodes,
while only a couple of minutes when adding 16 nodes (with

query latency less affected during this interval). This is be-
cause more servers quickly join the cluster and take a large
portion of the applied load. The total 24 nodes are now
adequate to handle the load. Therefore the transient period
takes less time and affects the clients at a smaller degree. In
the update workloads, we notice an oscillation in both cases:
This happens because of the compaction and caching mech-
anisms of HBase (see Section 3.1). Incoming data is cached
in memory (resulting in low update latencies) but when the
memory is full and a I/O flush occurs with a compaction,
the latency is increased until the new blocks are written to
the file system.

For the client-side throughput µ, depicted in the second
graph, we notice a clear gain when adding nodes in read
workloads: after the transient phase, adding 16 nodes re-
sults in about 170 Kreqs/sec in the steady state and 100
Kreqs/sec for the READ+8 case (compared to about 55K
before additions). More servers are able to simultaneously
handle more requests that results in a higher throughput
(roughly doubling and tripling it respectively). Although
items are not actually transferred, this speed is due to the
caching effect of the RegionServers: New nodes eventually
cache their assigned regions and do not need to contact the
nodes that store them. For the update workloads, we no-
tice small improvement in adding 16 compared to adding 8
nodes, but since the update is an I/O-bound operation, µ
is not significantly altered. As initial data is not moved, a
portion of incoming updates will be handled by the initial
nodes. Only when new regions are created, due to a minor
compaction for instance, I/O operations will be handled by
the new nodes.

The final graph reports the aggregate cluster CPU usage
as registered by the Ganglia tool. In the read workloads
we notice that the initial load of around 55% is reduced
to around 42% in both cases. Evidently, the newly arrived
nodes immediately start handling incoming queries and al-
leviate the initially overloaded cluster. The addition of 16
against 8 nodes does not result in a further decrease in the
average CPU, as the load is still large enough for all servers
to contribute. The extra 8 nodes make a difference in terms
of throughput, as shown in the second graph. Contrarily, a
drop in CPU usage is a good indication for adding servers
against the maximum load. In the update workloads, we
notice that in both experiments the initial CPU load con-
tinues to drop until run completion. This drop is due to the
slow writes that occur during updates: The server freezes
incoming requests until the updated regions are flushed to
the file system.

In Figure 4 we present the respective results for the Cas-
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Figure 4: Query latency, query throughput and CPU usage per time for a Cassandra cluster of 8 nodes after
adding 8 and 16 more nodes for the UNIFORM READ and UNIFORM UPDATE workload with a query
rate of λ = 180 Kreqs/sec

sandra cluster. In each test, clients request 2M each out
of the total 20M objects stored in the database. During
the experiment, clients are aware of the up-to-date list of
server addresses and each request is directed to a random
one. Since Cassandra does not have a mechanism to inform
clients about new servers, a custom script was developed to
propagate these changes back to the clients, whenever a clus-
ter resize occurred. The first graph presents query latency:
In both READ cases, we notice that the latency almost im-
mediately drops from an initial value of around 22 secs to 10
secs and 8 secs respectively: New servers are assigned half of
the data partitions of existing servers, they cache portions
of their data and answer queries on their behalf. The larger
the resize, the bigger the decrease in latency. The same hold
for the update workloads: Adding more nodes reduces the
query latency from 11 sec to around 7 in the UPDATE+8
case and to around 5 in the UPDATE+16 case. Again, we
notice here that writes are in general faster than reads: This
is due to the weak consistency model followed by Cassandra,
where writes do not have to be propagated to every replica
holder for the operation to succeed.

Query throughput µ shows a similar trend. Both in read
and update workloads we notice the almost linear effect of
adding new nodes. Read throughput is increased from an
initial value of 9 Kreqs/sec to 18 Kreqs/sec when 8 nodes are
added and to 22 Kreqs/sec when 16 nodes are added. Up-
date throughput is increased from around 15 Kreqs/sec to
29 Kreqs/sec in the +8 case, and to 35 Kreqs/sec in the +16
case. This behaviour is expected, since extra servers imme-
diately join the p2p ring and take portions of the applied
workload. Moreover, the asynchronous nature of eventual
consistency enables Cassandra to maintain a stable through-
put rate even in a write-heavy workload: Updates are suc-
cessful upon transmitting the object to a single server, which
replicates it later on in a lazy manner.

Finally, in the third graph of Figure 4 we present the vari-
ation of the total cluster’s CPU usage during time. In the
read case, we notice that adding 8 nodes slightly decreases
the initial CPU usage to around 60%, whereas adding 16 ex-
tra servers decreases the average CPU load to around 50%.
Similar to the HBase case, the 50% load of the 24-node clus-
ter shows that the applied load is big enough for every server
to contribute, since new servers are not idle. The same hold
for the update workloads: Adding 8 nodes brings the load
to around 80% and the addition of 16 nodes drops the load
to around 70%. Update workloads are more computation-
ally heavy than simple reads, as in the update case there is
an extra cost of disk access that is avoided during reads by

caching fetched results.
In this kind of setting, we note how both NoSQL sys-

tems take advantage of the addition of extra nodes: HBase
exhibits very fast concurrent reads compared to Cassandra:
In the READ+16 case it can handle 160 Kreqs/sec with a la-
tency of about 2–3 secs and an aggregate CPU usage of 40%,
whereas Cassandra’s throughput is 40 Kreqs/sec, a latency
of around 8 secs and a higher CPU usage of 50%. On the
other hand, Cassandra is more efficient with object updates:
It maintains stable throughput and latency curves avoiding
oscillations that occur with HBase. Finally, we notice that
Cassandra does not exhibit a negative transient effect when
new nodes enter the ring. Its decentralized nature allows for
a transparent cluster resize, whereas in HBase the HMaster
needs to coordinate the whole procedure.

4.4 Elasticity-provisioning prototype
In this section we present some initial results achieved us-

ing our framework to deploy a fully automatic cluster resize
system. Our goal is to demonstrate the effectiveness and
modularity of our design to allow for adaptive cluster resize
without any human involvement. We utilize a long running
read-heavy load through the YCSB tool, for a total load of
9 Kreqs/sec on an 8-node HBase cluster. Approximately
7 minutes into the experiment, an additional load of 180
Kreqs/sec is created using extra YCSB clients. The high
load is run to completion, at which point the system returns
to operation with medium and then low load.

The expected behaviour we plan to achieve is through the
use of a well-behaving balancing module to add nodes as the
load increases beyond the servers’ capability and then return
to the original cluster size once the extra load has faded.
To achieve this, we have configured our rebalancing module
with a number of triggers taking advantage of our experience
from the previously-presented experiments. The parameter
to trigger node addition is CPU usage of over 40%, for any
one server on the cluster. This is in order to identify servers
that are over-working despite a well-behaving operation of
the cluster as a whole. On the other hand, to remove a node,
our threshold is CPU usage of 15% or lower for all nodes in
the cluster, as a removal should occur only when all servers
have minimal load. To avoid oscillations, as both metrics
could vary greatly during normal operation, we complement
these metrics with the provided load_five Ganglia metric,
a running average of the load in the last 5 minutes that helps
in determining whether the CPU load is constant over time
or whether it was caused by a transient process.

These conditions for node addition and removal follow our
experience with HBase’s operation. As we have observed,
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Figure 5: CPU usage and query throughput for an HBase cluster of 8 nodes under dynamic load changes.

the cluster seems to reach its peak performance when the
average CPU load approaches 50%. The trigger was set a
bit lower at 40% so as to deal pro-actively with load spikes.
Also in Figure 2, we can see that the total CPU load for
very small λ remains under 15%. A CPU load of under 15%
indicates then that most cluster servers are idle and, as a
consequence, one or more of them are redundant.

As we can see in Figure 5, the experiment has validated
our expectations from the experimental results. The low ini-
tial load stresses the servers enough to avoid a node removal
but not enough for a node addition. Once we initiate the
load increase (first vertical line, throughput graph), CPU in-
creases dramatically and 10 minutes are needed for the new
node to be fully operational and monitored. This happens
for two reasons: First, launching, configuring and adding a
new node to the cluster takes approximately 5 minutes (see
Section 4.2). Second, the load average over 5 minutes has to
significantly increase in order for the action to be triggered
by one of the nodes. The total throughput, as measured on
the whole cluster, increases as expected after each addition.

The high load requests complete before the addition of
the fourth extra node. At this point (second vertical line of
throughput graph) the total load decreases significantly, but
not substantially for a new node addition. The system con-
tinues its normal operation, since the medium load is just
enough to prevent node removal. Once the load drops un-
der the lower threshold (third vertical line), node removal
proceeds. As shown, node removal is much faster than node
addition, thus the system returns to its original size in about
5 minutes. In terms of throughput, each node addition pro-
duces a noticeable increase to the number of server requests,
from about 100K to 130K before the high load part of the
experiment finishes, despite the fact that no operation is per-
formed to rebalance the cluster’s data. CPU usage does not
drop significantly during single node addition, since there
are not enough nodes added to accomodate the high load
efficiently.

5. RELATED WORK
A literature study about the challenges of scaling whole

applications in cloud environments is presented in [28], along
with an overview of state of the art efforts towards that
goal. In [16], the authors propose a service specification lan-
guage for cloud computing platforms that handles automatic
deployment and flexible scaling of services. Similarly, the
work in [22] designs a model implementing an elastic site re-
source manager that dynamically consolidates remote cloud
resources on demand based on predefined policies and a pro-
totype for extending Torque clusters. The works in [29, 26]
solve the problem of optimizing VM resources (CPU, mem-
ory, etc) to achieve maximum performance using relational

DBs. In comparison, we use the standard VM model that
large cloud providers currently offer. As a general observa-
tion, these works do not address NoSQL systems and their
performance under (dynamic) cluster resizes.

The work in [21] presents policies for elastically scaling the
Hadoop-based storage-tier of multi-tier Web services based
on automated control. Oppositely, we studied NoSQL sys-
tems that store structured data and are easier to manipulate
in the application level. We converge in adopting the same
metric, CPU Utilization, and evaluating rebalancing costs.
The main difference is that this approach is HDFS-specific
since monitoring was integrated in HDFS nodes, while data
rebalance is mandatory for the new nodes to become oper-
ational. On the contrary, our framework uses an external
monitoring tool, Ganglia, so as to be generic and applicable
to any NoSQL system and rebalancing need not be forced,
as it strongly relates to the NoSQL system used.

A thorough analysis of various proprietary NoSQL-like
cloud services, namely Google’s AppEngine, Microsoft’s SQL
Azure and Amazon’s SimpleDB, is presented in [19]. The au-
thors test system aspects such as scalability, cost and per-
formance utilize the TCP-W benchmark. All systems are
treated as “black boxes”, since no information about their
design or implementation is assumed to be known. In con-
trast, our system is fully aware of the different engines’ in-
side mechanisms. Moreover, we utilize our measurements
to present a modular framework that can be used to realize
automatic cluster-resizing.

Cloudy [18] is a cloud-enabled framework which supports
auto-scaling features according to demand, providing sim-
ple key/value put/get primitives. Nevertheless, compared
to our system, it is not designed to support numerous No-
SQL databases. In NEFELI [27], cloud users inform the
cloud management framework with hints about the applica-
tion nature and the framework modifies its scheduling poli-
cies to improve the application performance. The difference
is the need for a middleware to be installed inside the cloud
management layer, whereas our framework utilizes only the
cloud client tools, being completely agnostic about the in-
ternals of the cloud management platform, enabling it to be
installed over various platforms.

CloudWatch [1] is Amazon’s commercial product for mon-
itoring and managing cloud resources. CloudWatch offers a
set of metrics for every VM instance and a policy frame-
work to trigger balancing actions when some conditions are
met. Its metric support is limited, offering only hypervisor-
related information such as CPU usage and network traffic.
Memory usage or application-specific metrics are not sup-
ported out of the box, in contrast to Ganglia which, apart
from its own rich set of probes, has inherent support from
many applications, including some NoSQL systems. Cloud-
Watch, as a general purpose tool, does not have inherent



support for NoSQL and as of this, the extra coding to recon-
figure the application cluster after a hardware resize is not
avoided. Other frameworks for commercial cloud platforms
like AzureWatch [4] feature similar characteristics, resulting
in expensive vendor lock-ins.

6. DISCUSSION
As our architecture and experimental section makes clear,

there exists a number of often conflicting factors that our
framework needs to take into account. During our design
and implementation, we have observed that there are numer-
ous pitfalls and dubious assumptions about several compo-
nents, e.g., about the elastic capabilities of NoSQL databases.
In the following, we argue on the design choices and offer
recommendations based on our experience in setting up this
system.

6.1 Monitoring module
Certain design decisions have to be made concerning the

monitoring module. The most important of them are the
type of monitoring, the relevant metrics that will be moni-
tored, and the avoidance of single points of failure. Monitor-
ing can be either active, achieved by periodically injecting
probing queries, or passive, thus collecting statistics from
already posed user queries. Similarly, monitored metrics
could include either general-purpose metrics (such as net-
work traffic, memory and CPU usage per VM) or high-level
application-specific metrics (such as mean query response
time), and they should ideally be collected in a fast and
scalable way.

Active monitoring implies running a specialized tool for
determining the state of the database cluster as a whole,
while passive monitoring could use statistics exported from
the VMs and database-specific metrics reported from the
database system. Our design has opted for the passive mon-
itoring solution without database-specific metrics for two
reasons; speed and accuracy. Active monitoring entails a sig-
nificant trade-off between speed, accuracy and system abuse.
This means that executing long running tests would inter-
fere with the system’s normal operation stressing or altering
it (in the case of writes). On the other hand, if small tests
were to be chosen, they would fail to spot possible stress on
very active data regions, giving an inaccurate state of the
cluster’s performance. Results of Section 4.1 show that we
can fairly accurately distinguish both the critical state of
each database system and the amount of load that currently
stresses the system using passive, general purpose metrics.
We have selected to utilize the VM-related metrics for gen-
erality, because not every database uses the same metrics or
reports them in a comparable manner.

Passive data-collection through Ganglia, besides using a
unified way to report accurate statistics in human readable
format, is easy to setup in an elastic way, requiring only
a single configuration file to be propagated amongst dif-
ferent monitored VMs. Ganglia offers proven scalability.
Data can be collected remotely for individual hosts or for
the whole cluster by probing the metadata aggregation ser-
vice (gmetad). These collected statistics are then remotely
accessed and evaluated in order for a system administrator
or automated system to decide on appropriate rebalancing
actions.

6.2 Database elasticity
Deciding the best way to elastically alter the cluster size

for each database, one has to take into account each DB’s
characteristics. This includes data and region rebalancing,
the ability to expose changes to the DB’s clients and avoid
data loss when scaling down. Although HBase, Cassandra
and Riak claim that they behave in an elastic way, the prac-
ticalities of scaling up or down differ in each system due to
their architectural differences, and therefore affect the per-
formance gain in each case.

The ability to automatically rebalance different database
regions (or shards in RDBMS terminology) is crucial for
any elastic system. In HBase, region rebalancing is auto-
matically performed by the HMaster when new nodes are
added or removed from the cluster, and the Zookeeper is
responsible for propagating and resolving conflicts between
RegionServers, as per the HMaster’s decision. Given that
all RegionServers operate on top of a shared file system
(HDFS) there is no preferential treatment when assigning
new regions, thus HMaster can easily deal the available re-
gions in a fair way. Therefore, HBase is extremely elastic,
as all new nodes can quickly assume load, increasing the
cluster’s performance in very short time, as reported.

Conversely, Cassandra does not split data into regions of
equal size. As a decentralized system, it reassigns regions
on a per node basis, i.e., region rebalancing is performed
in node pairs between newly arrived and previously existing
ones. Every new node acquires and is responsible for serv-
ing half the key-space of an existing one, meaning that for
each request it has to retrieve data from the previous owner.
Despite the fact that retrieved data are cached, new nodes
are practically much slower, as they have to rely on existing
nodes for results. In order for a new node to assume all the
data corresponding to its key-space, a data rebalance oper-
ation has to be performed. Although our experiments show
a 22% boost in terms of throughput compared to an un-
balanced cluster of the same size, data migration took more
than 11 hours and moved almost the entire dataset of 90GB.
The need for such an expensive operation limits the elastic-
ity of a Cassandra cluster for short-term load variations.

Riak, on the other hand, divides data space into partitions
and as new nodes are added, they claim an equal slice of par-
titions so that both data and requests are allocated evenly
to all nodes participating in the ring. However, the fact that
the cluster turns unresponsive for a throughput higher than
what its nodes can handle, prevents us from examining its
elasticity under high load.

Overall, the important question is whether data rebalanc-
ing operations are necessary and when. In our opinion, data
rebalancing should only be performed when the system ad-
ministrator can accurately predict that the load will remain
constant for a large amount of time, that is in the order of
days. In this case, a data rebalancing operation should be
performed, even if it affects peak system performance, as the
overall gain justifies the time and performance cost of the
rebalancing. On the contrary, variable and unpredictable
load in the order of hours does not justify such an expensive
of operation, and should be avoided.

In this work, our goal is to test NoSQL systems under-
going extremely dynamic elastic operations under variable
high load. This behaviour can be achieved using Cassandra
and HBase, although the results are not similar. HBase’s
operation over a similarly elastic, shared file system, and
infrequent compactions provide the best results.

Elastic behaviour has to also be exploited on the client



side, which means that the clients can be made aware of the
addition of new servers. This is achieved automatically in
HBase’s case, as clients negotiate with the HMaster. How-
ever, Cassandra and Riak need an explicit load-balancer ex-
ternal to the database system to simulate such a behaviour,
affecting performance in terms of latency.

Finally, there is the matter of avoiding data loss during
node removal. To avoid data loss, there should remain at
least one replica during node removal. For this guarantee,
only 2 nodes can be removed at once, in the case of a repli-
cation factor of 3. What is more, after the removal, NoSQL
systems must deal with the degraded replicas. Since Cassan-
dra and HBase do not perform this automatically, it must be
manually handled by the elasticity framework by explicitly
issuing data rebalancing commands, which is, as we have
shown in 4.3, a costly procedure.

7. CONCLUSIONS
In this work we presented a thorough study to quantify

and analyze the costs and gains of various NoSQL cluster
resize operations, utilizing three popular NoSQL implemen-
tations. To this end, we designed and implemented a fully
modular and cloud-enabled framework that allows efficient
resource monitoring and direct interaction with the cloud
vendor and the cluster manager.

During this study, lots of valuable lessons were learned and
much experience was gained relative to both cloud-platforms
and NoSQL engines. A primary concern relates with the pro-
visioning of a platform-agnostic, non-intrusive and metric-
complete monitoring module. Our Ganglia choice offers a
complete set of metrics reported in a scalable manner, even
with native NoSQL support (e.g., for HBase). Moreover, re-
quiring just an image from a NoSQL engine enables different
implementations being tested over the same framework.

The ease of setup and the performance under elastic op-
erations weigh on choosing a particular NoSQL. All three
engines we tested can be setup with relative ease. There are
few configuration files that need to be injected during launch
and most of the operational parameters can be adjusted by
altering the appropriate settings. There is no need to pro-
vide new configuration files or commands during normal op-
eration, especially during the rebalancing phases. Neverthe-
less, their quite distinctive behavior and performance un-
der different scenarios make the decision quite application-
specific: HBase is the fastest and scales with node additions
(only for reads though); Cassandra performs fast writes and
scales also, without any transitional phase during node ad-
ditions; Riak was unresponsive in high request rates, could
scale only at lower rates but rebalances automatically; all
three achieve small gains from a data rebalance, provided
they are under minimal load.

We believe that this work has demonstrated the feasibility
of our ultimate goal. Based on our findings, we offered a
prototype implementation of our automatic cluster resize
module, that matches the number of provisioned resources
against the total demand and the application expert’s rules
of required operation. Our open-source implementation can
provide a good basis on which numerous applications can
test their adaptivity at very-high scale.
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