
PASS It ON (PASSION): An Adaptive Online
Load-Balancing Algorithm for Distributed Range-Query

specialized Systems

Ioannis Konstantinou, Dimitrios Tsoumakos and Nectarios Koziris

Computing Systems Laboratory
School of Electrical and Computer Engineering

National Technical University of Athens
{ikons, dtsouma, nkoziris}@cslab.ece.ntua.gr

1 Introduction
A basic requirement for every P2P system is fault-tolerance. Since the primary objec-
tive is resource location and sharing, we require that this basic operation takes place in a
reliable manner. In a variety of situations with skewed data accesses (e.g., [1] , etc) the
demand for content can become overwhelming for certain serving peers, forcing them
to reject connections. In many cases, these skewed distributions take extreme forms:
Flash crowds, regularly documented surges in the popularity of certain content, are also
known to cause severe congestion and degradation of service [2]. Data replication tech-
niques is one commonly utilized solution to remedy these situations. Nevertheless, there
are cases in which the requested resources cannot be arbitrarily replicated. Distributed
data-structures that support range-queries is such an example: The keys are stored in the
network nodes so that a natural order is preserved. These structures can be very useful
in a variety of situations: On-line games , web servers , data-warehousing , etc. In such
cases, adaptive and on-line load-balancing schemes must be employed in order to avoid
resource unavailability and performance in a variety of workloads [3, 4].

Our contribution In this work, we present PASSION, an on-line, adaptive load bal-
ancing algorithm that operates on distributed range-partitioned data structures. Our al-
gorithm operates in a completely decentralized manner and requires no kind of global
coordination. Its goal is, through key exchange between neighboring nodes according
to their current load and individual thresholds, to counterbalance the inequality in load
that affects performance. Each peer, upon sensing an overload situation relative to its
individual threshold, requests help and proactively sheds a suitable part of its load to its
neighbors. Load moves in a “wave-like” fashion from more to less loaded regions of the
structure adaptively.

2 PASSION
The main idea behind PASSION is the following: When the current load of a node exceeds
its self-imposed threshold threshi, the node sends a HELPREQUEST message containing
its current load to one of its neighbours. The recipient node takes over a portion of the
overloaded node’s key range. This procedure is performed online, that is, nodes continue
to serve requests during the key transfer. The recipient then estimates his new load and
if this is above its local threshold, it initiates a new HELPREQUEST towards another
neighbouring node. The procedure continues TTL hops away at most or until all nodes
have successfully shed their load below their thresholds.



lo
ad

lo
ad

A B C D BA C D

keys keys

Fig. 1. PASSION example

0 100 200 300 400 500
Nodes

0

50

100

L
oa

d

t=200sec
t=600sec

Fig. 2. Before balance, θ = 1

0 100 200 300 400 500
Nodes

0

50

100

L
oa

d

t=200sec
t=930sec

Fig. 3. After balance, θ = 1

0 100 200 300 400 500
Nodes

0

50

100

L
oa

d

t=200sec
t=600sec

Fig. 4. Before balance, θ = 1.4

0 100 200 300 400 500
Nodes

0

50

100

L
oa

d

t=200sec
t=865sec

Fig. 5. After balance, θ = 1.4

In order to calculate the portion of load that the overloaded node needs to shed, we
introduce the overThres threshold, where overT hreshi>threshi. If the splitter’s load is
above the overThresh, then only a fraction a of the extra load is accepted. Otherwise, the
splitter’s excessive load is fully accepted. Like the simple thresh, overThresh is a local
per-node setting. Its purpose is to smooth out the key/load exchanges between sequential
PASSION executions.

3 Initial Results
We present an initial simulation-based evaluation of our method. We assume a network
size of 500 nodes, all of which are randomly chosen to initiate queries at any given
time. More specific, we apply passion on our simulator with load generated by: a zipfian
distribution for θ = 1 and θ = 1.4 (see Figures 2–5).

References

1. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y., Moon, S.: I tube, you tube, everybody tubes:
analyzing the world’s largest user generated content video system. In: IMC ’07: Proceedings of
the 7th ACM SIGCOMM conference on Internet measurement. (2007)

2. Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service attacks: Char-
acterization and implications for CDNs and web sites. In: WWW. (2002)

3. Karger, D.R., Ruhl, M.: Simple efficient load-balancing algorithms for peer-to-peer systems.
Theory of Computing Systems 39 (November 2006) 787–804

4. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned data with
applications to peer-to-peer systems. Proceedings of the Thirtieth international conference on
Very large data bases - Volume 30 (2004) 444–455


