
Querying Structured Data in an Unstructured P2P System

Verena Kantere
School of Electr. and Comp.

Engineering
National Technical University

of Athens

vkante@dbnet.ece.ntua.gr

Dimitrios Tsoumakos
Department of Computer

Science
University of Maryland,

College Park

dtsouma@cs.umd.edu

Nick Roussopoulos
Department of Computer

Science
University of Maryland,

College Park

nick@cs.umd.edu

ABSTRACT
Peer-to-Peer networking has become a major research topic over
the last few years. Sharing of structured data in such decentralized
environments is a challenging problem, especially in the absence
of a global schema. The standard practice of answering a query
that is consecutively rewritten along the propagation path often re-
sults in significant loss of information. In this paper, we present an
adaptive and bandwidth-efficient solution to the problem in the con-
text of an unstructured, purely decentralized system. Our method
allows peers to individually choose which rewritten version of a
query to answer and discover information-rich sources left hidden
otherwise. Utilizing normal query traffic only, we describe how ef-
ficient query routing and clustering of peers can be used to produce
high quality answers. Simulation results show that our technique
is both effective and bandwidth-efficient in a variety of workloads
and network sizes.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval; C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Databases

General Terms
Algorithms

Keywords
Peer-to-Peer, Query Reformulation, Structured Data

1. INTRODUCTION
In the last years there has been a growing interest in the Peer-

to-Peer (hence P2P) paradigm, at first as a new trend for network
applications and later for general decentralized applications of data
sharing. The P2P paradigm dictates a fully-distributed, cooperative
network design, where nodes collectively form a system without
any supervision.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIDM’04, November 12–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-978-0/04/0011 ...$5.00.

Today, the most popular P2P applications operate onunstruc-
turednetworks, with peers joining and leaving the system in an ad-
hoc fashion, while maintaining only local knowledge. While struc-
tured overlays (e.g., [1,2]) provide with efficient lookup operations,
in many realistic scenarios the topology cannot be controlled and
thus they cannot be used (e.g., dynamic ad-hoc networks or existing
large-scale unstructured overlays).

In contrast with data integration architectures, P2P data sharing
systems do not assume a mediated schema to which all sources of
the system should conform. In such a system, where peers share
(semi)structured data, each is an autonomous source that has a lo-
cal schema. Sources store and manage their data locally, revealing
only part of their schemas to the rest of the peers. In a pure P2P sys-
tem, peers perform local data management and coordination with
their acquaintees, i.e. their one-hop neighbors in the overlay. Dur-
ing the acquaintance procedure between two peers, they exchange
information about part of their local schema and create a mediating
mapping semi-automatically [3]. The establishment of an acquain-
tance implies an agreement for the performance of data coordina-
tion between the acquaintees based on the respective schema map-
ping. However, peers do not have to conform to any kind of data
or schema transformation in order to establish acquaintances with
other peers, and, hence, participate in the system.

In a large-scale structureless P2P data management system as
described above, joining peers become acquainted to the first ran-
domly available nodes and not to the most useful ones, i.e. the peers
that best meet their need for information. Therefore, they have to
direct queries not only to their neighbors, but also to a greater part
of the system. As a consequence of the lack of global schema, peers
express and answer queries on their local schema. Furthermore, the
lack of global knowledge deprives peers from the ability to direct
their queries to appropriate remote nodes.

The straightforward procedure for query processing in an un-
structured P2P data management system consists of the propaga-
tion of the query on paths of bounded depth in the overlay. At
each routing step, the query is rewritten to the schema of its new
host based on the respective acquaintance mappings. A query may
have to be rewritten several times from peer to peer till it reaches
nodes that are able to answer it sufficiently in terms of quality but
also quantity. It is obvious that the successive rewritings decrease
monotonically the information held by a query and, thus, also re-
duce monotonically the possibility of accurate query answering.
Moreover, it is the case that peers may not be able to sufficiently
answer received queries not because their local schema does not
match the initial query adequately, but because the incoming rewrit-
ten version has been gradually reduced. Therefore, the performance
of the query processing procedure is degraded during the rewritings
on intermediate peers.

StuartDB HDB

Results(testid, pid, date, results, diagnosis)LDB
Patients(pid, name, age, sex)

DavisDB

Treatments(pid, date, symptoms, diseasedescr, treatrec, drugname)
Patients(pid, name, age, sex)

Treatments(pid, date, symptoms, diseasedescr, treatrec, drugname)
Patients(pid, name, age, sex)

Admissions(pid, name, sex, symptoms)
Treatments(trid, pid, diseasedescr, treatdescr, physid)
Medication(pid, date, time, drug, dose)

Figure 1: Part of a P2P system with peer-databases from the
health environment

In this paper, we propose a methodology that aims at increasing
the accuracy of query answering in the absence of a global schema
in unstructured P2P data management systems. Our method pro-
poses a first solution to the problem of query degradation by evad-
ing query rewriting at peers poor in relevant information. We pro-
pose an adaptive, bandwidth-efficient scheme that performs a grad-
ual clustering between peers with common interests in terms of in-
formation. This is solely performed by exploiting normally posed
queries and their replies in a decentralized manner. We then pro-
ceed to describe the query routing and clustering mechanisms as
well as the local metadata maintenance used to achieve these goals.
Finally, we present experimental results for a variety of environ-
ments and workloads which show that our method manages to im-
prove the quality of query results using very few messages without
any kind of global knowledge.

1.1 Motivating Example
Envision a P2P system where the participating peers are databases

of private doctors of various specialties, diagnostic laboratories and
databases of hospitals. Figure 1 depicts a small part of this system,
where nodes are: DavisDB - the database of the private doctor Dr.
Davis, LDB - the database of a diagnostic laboratory, StuartDB -
the database of the private doctor Dr. Stuart and HDB - the database
of a department of a hospital. On top of each database sits a P2P
layer, which is responsible for all data exchange between this peer
with its acquaintees. The P2P layer is also responsible for the cre-
ation and maintenance of mappings of local schemas during the es-
tablishment of acquaintances towards the line of [3]. The schemas
of the databases are shown in Figure 1. Moreover, each peer owns
a query rewriting and a query-schema matching mechanism. Thus,
when a query expressed on the local schema of a peer is propagated
to one of its acquaintees, it can be rewritten to the latter’s local
schema as follows: the peer that has to perform the rewriting uses
the mapping that exists between its own schema and the schema of
the respective acquaintee and employs the query-schema matching
mechanism to deduce which matches are necessary for the rewrit-
ing of the query. Then, it employs the rewriting mechanism and the
selected matches in order to express the query on the local schema.
Note that the rewritten query will carry only the part of informa-
tion of the original version that is present in the schema mapping
between the two acquaintees. The methodologies of peer-schema
matching and query rewriting are out of the scope of this work.
Other works like [3], [4], [5] are dealing with these issues.

Suppose that Dr. Davis would like to search the P2P system for
information about cases of patients that suffered from X. He would
like to know what are the characteristics of these patients, i.e., sex

and age, the symptoms that led to the diagnosis of X and what
was their treatment. Thus, he poses the following query in the P2P
system:
Qorig:

SELECT age,sex,symptoms,treatrec,drugname
FROM Patients,Treatments
WHERE Patients.pid = Treatments.pid

and Treatments.diseasedescr = "X"

DavisDB propagatesQorig to its single acquaintee, LDB. In or-
der for the latter to answer the above query, it rewrites it to each
own schema:
Qorig LDB:

SELECT age,sex
FROM Patients,Results
WHERE Patients.pid = Results.pid and

Results.diagnosis = "X"

In the above rewriting we have assumed that Treatments.diseasedescr
is mapped to Results.diagnosis. LDB sends the above query to
its acquaintees: StuartDB and HDB, that rewrite it to their own
schemas as follows:
QLDB StuartDB:

SELECT age,sex
FROM Patients,Treatments
WHERE Patients.pid = Treatments.pid and

Treatments.diseasedescr = "X"

QLDB HDB:

SELECT sex
FROM Admissions,Treatments
WHERE Admissions.pid =Treatments.pid and

Treatments.diseasedescr = "X"

In the above rewritings we have assumed that Results.diagnosis
is mapped to Treatments.diseasedescr. However, if we could rewrite
the original query to peers StuartDB and HDB, they would have to
answer the following queries, respectively.
Qorig StuartDB:

SELECT age,sex,symptoms,treatrec,drugname
FROM Patients,Treatments
WHERE Patients.pid = Treatments.pid and

Treatments.diseasedescr = "X"

Qorig HDB:

SELECT sex,symptoms,treatdescr,drug
FROM Admissions,Treatments,Medication
WHERE Admissions.pid = Treatments.pid and

Treatments.pid = Medication.pid and
Treatments.diseasedescr = "X"

In the general case of a P2P database system such as the one de-
scribed above, it is not possible to thoroughly rewrite a query posed
on a peer-local schema when it is propagated to another peer, be-
cause of the incomplete matching of the two peer-schemas. A non-
complete query rewriting is acceptable in our context, even though
in a centralized or distributed database system it is not. The high au-
tonomy of the involved peer-databases leads to an acceptable loose
consistency level concerning data management, different from the
strict consistency imposed on traditional database systems. Despite
this fact, it is desirable to limit the inconsistencies during this pro-
cess as much as possible. As far as query answering is concerned,

this means that our goal is to achieve a query rewriting that will lead
to the retrieval of the most accurate and complete answers possible.

It is obvious that the rewritings of the original query in StuartDB
and HDB maintain more information than the respective rewritings
of the query coming from LDB. This extra information is lost in the
rewritings of the LDB query version, not because of malfunction
of the rewriting mechanism in any of the peers in the propagation
path, but because of the poor schema mapping between DavisDB
and LDB. Thus, with the approach of query rewriting in every step
of the propagation procedure, DavisDB fails not only to retrieve
sufficiently accurate answers to the initiated query, but also to spot
more convenient candidates for immediate neighbors in the P2P
system.

2. ALGORITHM DESCRIPTION

2.1 Methodology
Driven by applications similar to the aforementioned example,

we have developed a methodology that combines query rewriting
together with automatic schema matching that overcomes obstacles
of poor matching in query propagation paths. Our goal is for peers
to gradually discover remote nodes affluent in pertinent information
that are ”hidden” behind peers with very dissimilar data and poor
rewriting mechanisms. Moreover, the proposed methodology en-
ables peers to evaluate these promising nodes over multiple queries
and decide whether they can benefit from them in terms of relevant
information. In such a case, peers can ask to get acquainted with
these remote peers. The result is a gradual reformulation of the P2P
system towards a structure where acquaintances are between peers
with similar schemas and data.

For two versions of a queryQ, Qv1 andQv2 we define a similarity
measureMsim as follows:

Msim(Qv1,Qv2) : dom(Qv1)∪dom(Qv2)→ℜ

Msim(Qv1,Qv2) = |dom(Qv1)∩dom(Qv2)|
|dom(Qv1)|

WhereQvi for i = 1,2 is either the original version of Q,Qorig,
or a rewritten version of it,Qrewr. Also,dom(Qvi) is the domain of
Qvi, meaning the schema elements together with the relationships
among them that it involves. The implementation ofMsim depends
on the individual understandingof the above measure definition
of each peer. In consequence, it depends on the schema match-
ing methodology used by each peer but also on their preference for
consistent or numerous answers: a peer may need to retrieve an-
swers from the P2P system that are very consistent with its local
schema; however, most of the peers that will be asked to send rel-
evant information will have very dissimilar schemas to the schema
of the first peer. Thus, peers often have to choose between quality
and quantity, a choice that can be denoted and controlled with the
implementation ofMsim. For our motivating example, we introduce
a simplistic metric of schema similarity suitable for queries without
wildcards (like stars and variables) and WHERE clauses only with
arithmetic operators, such asQorig:

Msim(Qv1,Qv2) = |{∪J∈Qv1/∃sat(J)∈Qv2}|
|{∪J∈Qv1}| · |{∪A∈Qv1/∃match(A)∈Qv2}|

|{∪A∈Qv1}|
Where:

-J is a join ofQv1, sat(J) is the satisfaction ofJ in Qv2, i.e. sat(J)
is either a relation or a join of relations inQv2 that can be matched
with J,
-A is an attribute of theQv1 (beyond the join attributes), andmatch(A)
is a matching ofA to attribute(s) ofQv2.

The above similarity metric computes the fraction of mapped
attributes of the SELECT and WHERE clause of the source query
Qv1 to the target queryQv2, weighted by the fraction of joins in

Qv1 that can be matched inQv2. For the motivating example, in all
cases all the joins can be mapped to the target schema. Thus:
Msim(Qorig,Qorig LDB) = 2/5 = 0.4
Msim(QLDB,QLDB StuartDB) = 2/2 = 1.0
Msim(QLDB,QLDB HDB) = 1/2 = 0.5
Msim(Qorig,Qorig StuartDB) = 5/5 = 1.0
Msim(Qorig,Qorig HDB) = 4/5 = 0.8

In order to compute the similarity of the original queryQorig
and the doubly rewritten versionsQLDB StuartDBandQLDB HDB, we
multiply the similarity values of the successive respective rewrit-
ings:
Msim(Qorig,QLDB StuartDB) = Msim(Qorig,Qorig LDB)·
Msim(QLDB,QLDB StuartDB) = 0.4·1.0 = 0.4,
Msim(Qorig,QLDB HDB) = Msim(Qorig,Qorig LDB)·
Msim(QLDB,QLDB HDB) = 0.4·0.5 = 0.2.
Thus:
Msim(Qorig,QLDB StuartDB)�Msim(Qorig,Qorig StuartDB) and
Msim(Qorig,QLDB HDB)�Msim(Qorig,Qorig HDB).

The comparison of the similarity values of a source query to two
target versions of it reveals which of the latter captures the infor-
mation encapsulated in the source query in a more complete way.
The above comparisons show that the straightforward rewriting of
Qorig in StuartDB and HDB is far better than the rewriting of the
respective rewritten version they receive from LDB,Qorig LDB.

Lets assume that HDB performs a conservative matching and
rewriting of Qorig. The produced query is not the complete rewrit-
ing Qorig HDB presented in section 1.1 but:
Q’orig HDB:

SELECT sex,symptoms
FROM Admissions,Treatments
WHERE Admissions.pid = Treatments.pid

and Treatments.diseasedescr = "X"

However, it is obvious that it captures more information than the
query produced from rewriting the already rewritten query on LDB:
Msim(Qorig,Q′orig HDB) = 2/5 = 0.4 > Msim(Qorig,QLDB HDB).
Hence, we can infer that even a poor automatic query-schema match-
ing may produce a better rewriting than the “safe” successive query
reformulation on all nodes of the propagation path.

BeyondMsim, each peer-database has a confidence measureθ
that characterizes the overall ability of the peer to be able to “guess”
the correct rewritten version of a query for which it has no schema
information. Based on this confidence, a peer decides whether to
answer the original query for which it has no schema information
or the already rewritten query on a schema for which it has map-
pings. Thus, each peer propagates to its acquaintees neither the
initial query nor the rewritten one, butbothas a pair and the receiv-
ing node decides which one to answer according to the confidence
measure. Generally, a confidence parameter depends on internal
features of a peer:
a) the peer’s estimation about its schema matching ability, and
b) the structure of the query: specifically, the amount of informa-
tion given by the structure of the query for the schema on which it
is expressed, so that there can be a certain degree of guarantee that
a respective rewriting will be accurate.

Therefore,θ expresses the guarantee for correctness and com-
pleteness of a query rewriting based on automatic schema match-
ing. Thus,θ is a function of the evaluated query Q and the structure
of the function depends on the peer p:θ = θp(Q). In our example,
according to the proposed query propagation technique, LDB sends
to StuartDB and HDB the pair(Qorig LDB,Qorig) and the latter de-
cide which one to answer according to the value of the respective
similarity measure weighted by the respective parameterθ. We in-

troduce this estimation metric as thecoverageof the target query
Qv2 on the source queryQv1:
Covp(Qv2,Qv1) = Msimp(Qv1,Qv2) ·θp(Qv1)

Generally, the initial value ofθ should be low. The peers of the
example are not highly confident for their query-schema matching
ability. However, query rewriting based on acquaintance mappings
is always complete and correct. Thus:
θStuartDB(Qorig) = θHDB(Qorig) = 0.5 and
θLDB(Qorig) = θStuartDB(QLDB) = θHDB(QLDB) = 1.0.
The coverages of the rewritten queries versus the original are:
CovLDB(Qorig LDB,Qorig) = 0.4·1.0 = 0.4,
CovStuartDB(Qorig StuartDB,Qorig) = 1.0·0.5 = 0.5,
CovHDB(Q′orig HDB,Qorig) = 0.4·0.5 = 0.2,
CovStuartDB(QLDB StuartDB,Qorig) = CovLDB(Qorig LDB,Qorig)·
CovStuartDB(QLDB Stuart,Qorig LDB) = 0.4·1.0·1.0 = 0.4,
CovHDB(QLDB HDB,Qorig) = CovLDB(Qorig LDB,Qorig)·
CovHDB(QLDB HDB,Qorig LDB) = 0.4·0.5·1.0 = 0.2.
Thus:
CovStuartDB(Qorig StuartDB,Qorig)>CovStuartDB(QLDB StuartDB,Qorig),
and
CovHDB(Q′orig HDB,Qorig) = CovHDB(QLDB HDB,Qorig).

Based on the computed coverages, StuartDB decides to answer
the rewriting of the original queryQorig Stuart, but HDB, because
of the tie of the calculated coverages, decides to answerQLDB HDB
and not the rewritingQ′orig HDB. Each node that answers a query
sends back a packet with the original queryQ, the successively
rewritten versionQsr, the automatic matched-rewritten versionQar
and the resulted tuples, Res with the indication of which one of the
two rewritings was finally answered:
Ans(Q,(Qar,Qsr),Res(Qx)), x = ar or sr.
StuartDB and HDB send back to DavisDB the following replies:
Ans(Qorig,(Qorig StuartDB,QLDB StuartDB),Res(Qorig StuartDB)),
Ans(Qorig,(Qorig HDB,QLDB HDB),Res(QLDB HDB)).

A node that receives an answer evaluates the result and the two
rewritings of the query according to the following function:
Ev(Ans) = Cov(Qx,Q) ·max(1,wQ · |Res(Qx)|),x = ar or sr,
where the multipliermax(1,wQ · |Res(Qx)|) gives the option to ei-
ther take into consideration the number of returned tuples weighted
by wQ, or not.
Also: Cov(Qx,Q) = Msim(Q,Qx) · θlocal(Q), whereθlocal(Q) is a
specialθ parameter that represents, on behalf of the peer that ini-
tiates Q: a) the estimation of how easily other peers can correctly
and completely rewrite Q, and b) the peer’s requirement for accu-
rate/complete answers to Q. Thus, high values ofθlocal(Q) show
that the query-initiating peer estimates that Q is easy to rewrite
and answers that are not fully accurate are welcome, whereas low
values indicate the opposite. Consequently, the value ofθlocal(Q)
will be high if we want to boost theθ(Q) values on other peer-
databases and encourage them to risk more during the automatic
query-schema matching procedure, orθlocal(Q) will be low oth-
erwise. It is straightforward that for acquaintees or successively
rewritten queries:θlocal=θsucc=1.0. We remind thatMsim is im-
plemented differently in each peer and the similarity evaluation of
two queries depends on which one of them is mapped to the other,
i.e., for which one the matching mechanism is aware of the respec-
tive schema. Thus, in general it isMsim(Qx,Q) 6= Msim(Q,Qx) and
Msimi (Qx,Q) 6= Msimj (Qx,Q) wherei 6= j for peersi, j. For sim-
plicity, we assume the same implementation ofMsim on all peers of
the example and that the similarity outcome is independent of the
database on which the query matching is performed.

For the motivating example, we assume that the number of tuples
of the results does not influence the evaluation (i.e.,wQ = 0 for all
the answers). Also, we assume that DavisDB estimates thatQorig

is easy to be ”decrypted”, i.e. the elements ofQorig are reasonably
named and it has a simple structure. Also, the user of DavisDB
prefers (up to a point) to sacrifice quality for quantity, i.e. prefers
to receive answers that are not quite accurate than not to receive
enough of them. Based on this reasoning, the selected value for
θlocal(Qorig) is 0.8. Thus:
CovDavisDB(Qorig LDB,Qorig) = Msim(Qorig,Qorig LDB) ·
θsucc(Qorig) = 0.4·1.0 = 0.4
CovDavisDB(Qorig StuartDB,Qorig) = Msim(Qorig,Qorig StuartDB)·
θlocal(Qorig) = 1.0·0.8 = 0.8
CovDavisDB(Q′orig HDB,Qorig) = Msim(Qorig,Q′orig HDB) ·
θlocal(Qorig) = 0.4·0.8 = 0.32
CovDavisDB(QLDB HDB,Qorig) = Msim(Qorig,QLDB HDB) ·
θsucc(Qorig) = 0.2·1.0 = 0.2
Hence:
CovDavisDB(Qorig StuartDB,Qorig) > CovHDB(Qorig StuartDB,Qorig)
andCovDavisDB(Q′orig HDB,Qorig) > CovHDB(Q′orig HDB,Qorig).

DavisDB sends back to StuartDB and HDB the respective
CovDavisDB as computed above, together with the estimation of
θlocal(Qorig). Assume now that StuartDB and HDB again host
Qorig initiated by DavisDB. Taking the previousθlocal(Qorig) es-
timation into account, they increase theθ(Qorig) value and loosen
up the matching mechanism in order to discover more matchings
betweenQorig and their schema.

StuartDB increasesθStuartDB(Qorig) to 0.8 and computes the new
coverage value since the respectiveMsim is already 1.0:
CovStuartDB(Qorig StuartDB,Qorig)= 1.0·0.8= 0.8 and sends it back
to DavisDB together with new results. At this point:
CovDavisDB(Qorig StuartDB,Qorig) = CovHDB(Qorig StuartDB,Qorig).
Thus, StuartDB and DavisDB gradually come to an agreement of
their estimation about StuartDB’s ability of answeringQorig.

The HDB database, encouraged by DavisDB, loosens the match-
ing procedure and produces the new rewritten query:
Q”orig HDB:

SELECT sex,symptoms,treatdescr
FROM Admissions,Treatments
WHERE Admissions.pid = Treatments.pid

and Treatments.diseasedescr = "X"

HDB achieved to match ‘treatdescr’ to ‘treatrec’ but failed again
to match ‘drugname’ to ‘drug’. It decides to increaseθHDB(Qorig)
to 0.7. The new coverage is:
CovStuartDB(Q”orig,Qorig HDB) = (3/5) ·0.7 = 0.6·0.7 = 0.42.
The new evaluation on DavisDB produces:
CovDavisDB(Q”orig HDB,Qorig) = 0.6·0.8 = 0.48. Again:
CovDavisDB(Q”orig HDB,Qorig) > CovHDB(Q”orig HDB,Qorig).

If Qorig is hosted for a third time in HDB, the latter will decide to
risk even more on the query-schema matching procedure and also
increaseθHDB(Qorig) to 0.8. Thus, the third rewritten version will
be Qorig HDB presented in section 1.1 in which HDB achieved to
discover all possible matchings. ForQorig HDB DavisDB and HDB
come to an agreement:
CovDavisDB(Qorig HDB,Qorig) = 0.64= CovHDB(Qorig HDB,Qorig)

Note that peers that perform automatic query-schema matching
for a queryQ are not allowed to set theθ(Q) to a value higher than
the respectiveθlocal(Q), which they receive as feedback from the
query-initiating peer. In this way theθlocal(Q) feedback value con-
trols the boosting or declining ofθ(Q) and the encouragement or
discouragement of Q-matching on answering peers. Also, the in-
crement step of aθ value influences the number of recursions of the
procedure. Hence, a low such step gives the opportunity to the peer
to get more potentially good evaluations from the requester and
ameliorate its matching procedure gradually and to a finer degree.

For example, if HDB decides to setθHDB = θlocal when receiv-
ing the first feedback from DavisDB, then it agrees to the latter’s
estimation right away, losing the chance to refine the matching for
Qorig. Accordingly, the described methodology achieves two goals:
a) the gradual training of peers in automatic schema matching for
queries initiated by specific peers and b) the discovery of nodes
concealed in the network that are convenient for acquaintees using
only the queries posed in the P2P system. Therefore, this method-
ology can be used in order to gradually cluster the P2P network so
that peers with common interests are close enough or acquainted.
Generally, a peer evaluates the ability of another peer to fulfill its
information needs with the following function:

Eval(Nid) = ∑
j
w j

k(Qj)

∑
i=0

Evji (Q j ,Q j rewr,Res(Q j rewr))

k(Q j)
,∑

j
w j = 1

The above function is the weighted average of j queries posed on
peer Nid k times (depending on the query). In our motivating ex-
ample DavisDB may decide to become acquainted with StuartDB
and/or HDB, since it has discovered that the latter can satisfactorily
fulfill its need for information.

2.2 The feasibility context of automatic schema
matching

Schema matching is a fundamental issue in the database field,
from database integration and warehousing to the newly proposed
P2P data management systems. As discussed in [6], most approaches
to this problem are semi-automatic, in that they assume human tun-
ing of parameters and final refinement of the results. This is also the
case in some recent P2P data management approaches (e.g., [7]).

However, there are cases where schema and query to schema
matching can be solved automatically. If we restrict the domain of
input of the automatic schema procedure in order to impound cases
of queries leading to complicated or fuzzy rewritings, then it is vi-
able to produce safe matchings within a small error tolerance. Of
course, in a P2P database system, this error tolerance together with
the matching and rewriting techniques used, depend on the individ-
uality of each peer. In our motivating example, we consider queries
with arithmetic operators (i.e., without nesting, aggregation, group-
ing, wildcards, etc). More complex queries demand more sophis-
ticated matching procedures and, in our case, more refinedMsim
functions.

Moreover, the similarity between source and target schemas ob-
served in domain-specific applications is a step further towards au-
tomatic schema matching. This situation is possible in real life
applications where peers may store their data in similar schemas
because: a) they store the same kind of data, b) there are specific
policies for designing databases of specific domains and c) there are
popular database products used in various fields. In our example,
private doctors in general and specialty doctors in particular have to
store the same kind of information, which is not of a wide variety:
i.e., they care about listing their patients, their medical histories,
their patients’ visits, their own diagnosis and their own prescrip-
tions for their patients. Moreover, it could be the case that some of
these specialists use the same commercial tool to store their infor-
mation. Obviously, for peer-databases with similar schemas such
as DavisDB and StuartDB, query rewriting can be done easily, even
with speculations of the schema mapping.

Our approach incorporates the inherent difficulties of automatic
schema matching. Theθ parameters provide control of the limits of
both schema and query structure for which peers perform automatic
matching. For example, more complicated queries imply a more
conservativeθ value. Moreover, peers characterize and accept au-
tomatic matchings and rewritings according to their individual stan-

dards of query-match and query-answer quality. Finally, our pro-
posal enables the enhancement of this process by having the query
sources continually and automatically evaluating the outcome. To-
wards this line, the reinforcement or weakening ofθ values enables
a recursive training of the schema matching mechanisms based on
feedback, just like supervised learning in neural networks.

2.3 Protocol Internals
In the following we describe our algorithm’s internals, specifi-

cally the query routing scheme, the maintenance of local knowl-
edge and the addition/deletion of acquaintances.

1) Routing:Our method utilizes informed walks with a TTL pa-
rameter in order to propagate queries to nodes in the overlay. The
requester deploysk walkers, each following independent paths. A
node forwards to the neighbor(s) whose schemas have the highest
similarity value relative to the query in hand.

2) Local Knowledge:Each peer keeps schema information for
all its one-hop neighbors in the overlay. Moreover, a peerq com-
putes a valueθq(Q) which represents the peer’s ability to translate
a queryQ to its local schema. IfQ comes from a neighbor, then
θq(Q) = 1.0. Theθq values depend in part on thereinforcement
mechanism we described: A requesterp that receives an answer
from a non-neighborq can either reinforce or weakenθq. This
depends on whetherp decides thatq’s interpretation of the query
is satisfying or not. Each peer keeps track of all recent transac-
tions with other peers that have returned query results. Specifi-
cally, it keeps theEval value averaged over the current number of
results from each of those peers. The corresponding entries are
updated whenever an answer is received. In case of limited stor-
age/memory,Eval entries are replaced using the LRU policy. As-
suming the created queries are equally important to the requester,
we model theθ update operation in the following manner: If the
requester is satisfied with the rewriting of a query (i.e., highEval
value), it signals for an increaseθq← θq + |η|, if θq < θplocal , oth-
erwiseθq← θplocal . For a small|η|, many recursions are needed
until the bound ofθplocal is reached.

3) Adding/dropping acquaintances:A neighborq is added when-
everθq = θlocal, provided we have received at leastT replies from
q. We also define a maximum number of connections per peer
MAXDEGREE, which forces a neighbor addition to be preceded
by the dropping of the neighbor with the smallest schema similar-
ity if that limit is reached. A link is dropped whenever the schema
similarity between two peers is belowMinMsim, provided the de-
grees of both the node andq are at least MINDEGREE. This en-
sures that peers do not get disconnected from the network.

Our protocol requiresO(A + MAXDEGREE) space per node.
A represents the maximum number of peers that return answers to
a node’s queries (A = O(k ·TTL) on average). The second factor
represents the stored schema information for each neighbor.

3. PERFORMANCE EVALUATION
To evaluate the performance of our method, we use a message-

level simulator written in C. We assume apureP2P model, where
all peers can make and forward requests. Each peer is only aware of
its 1-hop neighbors in the overlay. By default, we randomly choose
100 nodes that play the role of the requesters, each making 200
queries to the system. We present results forrandom(default) and
power-lawgraphs, utilizing theBRITE [8] and Inet-3.0[9] topol-
ogy generators respectively. Our random graphs have 1,000 nodes,
while power-law graphs have 3–10K nodes (both seem realistic val-
ues regarding our motivating application), with average node de-
grees around 4. Results are averaged over 20 graphs from each
type and size, with several runs in each.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

ov
er

ag
e

0 500 1000 1500 2000
#queries per requester

10

100

1000
#M

es
sa

ge
s

pe
r Q

ue
ry

Adaptive
Naive
Brute

Figure 2: Query coverage and bandwidth consumption over
variable number of queries per requester

0 500 1000 1500 2000
#queries per requester

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

ov
er

ag
e

Original
Rewr
total

Figure 3: Query coverage for answers to the rewritten and
original queries as the number of queries increases

100 200 300 400 500
#requesters

10

100

1000

#M
es

sa
ge

s
pe

r q
ue

ry

Adaptive
Naive
Brute

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 C

ov
er

ag
e

Figure 4: Query coverage and bandwidth consumption over
variable number of requester nodes

We assume a total number of 100 attributes, which represent
fields of the tables that each peer shares and forms queries from.
We utilize a uniform distribution to model both attribute placement
and attribute selection during query formulation. By default, each
peer obtains about 10 attributes and queries contain 3 attributes on
average. Initially, allθ values for queries from non-neighbors are
set to 0.5, whilewQ = 0. By default, we setθlocal = 0.7 for all
nodes,η = 0.05, MinMSim = 0.1 andT = 10 queries. We allow at
most 10 new extra links per node, while no links are dropped for
nodes with less than 3 neighbors. Finally, we setTTL= 7 and the
number of deployed walkers equal to 2.

We compare our method (namedAdaptive) against two different
schemes: The naive successive rewriting technique described in the
introduction (Naive) that uses the same routing scheme asAdap-
tive and the brute-force method, where the requester performs a
Gnutella-style flood [11], with each peer trying to answer the orig-
inal version of the query (Brute). Our main comparison metrics are
the average query coverage (in terms of the eventually returned at-
tributes) and the average number of messages produced per request.

3.1 Simulation Results
In the first experiment (Figure 2) , we show the performance of

our algorithm by varying the number of queries posed per requester
node. Our method manages to return far more accurate results, an-
swering 2 of the 3 queried attributes on average. The accuracy

Table 1: Performance under varyingθlocal values
Coverage Answers d

θlocal = 0.60 0.69 2.8 5.5
θlocal = 0.70 0.67 3.1 5.0
θlocal = 0.80 0.42 3.3 4.3
θlocal = 0.90 0.26 3.9 4.0

increases fast as more queries are created, since new acquaintances
are made and neighbors with no contribution are dropped. Both
NaiveandBruteoperate in a blind fashion, regardless of the work-
load, on the opposite ends of the spectrum: On one hand,Brute
contacts all nodes within range; however answering the original
query returns poor results. On the other hand, it may seem that
always answering the rewritten query (likeNaivedoes) yields ac-
ceptable results (average coverage about 0.4). This is not the case
though: The method’s relatively high average coverage is due to the
fact that it gets an answer from less than one node on average, and
that node is almost always a neighbor (average hop distance equal
to 1.2). Conversely, usingAdaptive, results are retrieved from 3–5
times as many nodes relative to theNaiveapproach.

Figure 3 shows how the accuracy of the received results for both
the rewritten and the original query ranges in this experiment. Our
method performs a partial restructuring around the query initiators,
the results of which are shown in the coverage rates as more queries
enter the system. It is interesting to notice that not only the origi-
nal queries get answered with more precision, but this is also true
for their rewritten versions. While only 20-30% of the results are
answers to rewritten queries, our clustering mechanism also helps
into bringing more information-rich nodes closer to requesters by
making the forwarding more competitive.

Our method is almost as bandwidth-efficient asNaive, while it
produces two orders of magnitude less messages thanBrute. The
few additional messages compared toNaiveare due to the commu-
nication between sources and requesters during theθ reinforcement
mechanism, as well as the message exchange when a new acquain-
tance is made. We observe that, regardless of the workload imposed
by each of the requesters, no extra traffic is added to the network.

Next, we evaluate the scalability of our method by varying the
number of requester nodes from 1% to 50% of the overlay and
present the results in Figure 4. Our scheme proves very bandwidth-
efficient in all runs, sending out only two extra messages compared
to Naive, regardless of the number of requesters. Peers route mes-

sages and manage their neighborhoods in a completely distributed
manner, so an increase in active peers puts no extra load on the
network. In terms of the coverage of the returned results,Adaptive
proves again more efficient and even succeeds in increasing query
coverage with more requesters.

Table 1 presents how the behavior of our scheme is affected by a
change inθlocal from 0.6–0.9 (given that the defaultθ = 0.5). Our
goal is to choose a value such that a high query coverage is achieved
while avoiding unnecessary new acquaintances. We can observe
that the smaller theθlocal values the more the average degreed
increases, as acquaintances are added more frequently. While cov-
erage andd decrease with highθlocal values, the number of dis-
tinct peers that answer the queries slightly increases. This is due
to the fact that with smallerθlocal (therefore denser overlay), the
“collisions” between walkers increase, thus reducing the number
of discovered sources. Collisions, or duplicate messages, are mes-
sages regarding the same request that arrive at the same peer due to
network cycles. Our choiceθlocal = 0.7 yields a good all-around
performance. A similar effect is observed if we vary the average
number of attributes maintained per peer: For smaller values, the
queries are more accurate, but fewer results are returned since fewer
nodes have similar schemas.

Finally, Table 2 presents results from comparing the three meth-
ods using 3 sets of power-law graphs, withN = {3K,5K,10K}
nodes and average degreesd = {3.7,3.9,4.4} respectively. We no-
tice that an increase in the number of nodes does not affect the
performance of our method. The distinctiveness of the power-law
topologies, where about 35% of the peers have degree one, forces
fewer paths to be used compared to the random topologies. This
explains the slight decrease in the average answer coverage (about
10%) compared to the random topologies. In contrast, theNaive
scheme now discovers less than 0.7 sources per query, whileBrute
produces thousands of extra messages each time the size of the net-
work increases.

4. RELATED WORK
In [12], the authors propose optimization techniques for query

reformulation in P2P data management systems. They focus on
minimizing the rewriting of a query and pruning the respective
propagation path in order to avoid redundant reformulations. Ad-
ditionally, it is indicated that pre-computation of the query refor-
mulation path-tree proves to accelerate the reformulation proce-
dure despite the disadvantage of the necessary maintenance of pre-
computed mappings. Our approach is specifically designed for
large-scale unstructured overlays. First, it evades reformulation at
peers poor in query-relevant information by adaptively choosing
the version of the query to be answered. Moreover, while the opti-
mizations in [12] require central knowledge of the system structure,
our scheme enables nodes to operate in a completely decentralized
fashion, utilizing the standard lookup operations to refine their lo-
cal knowledge.

PeerDB [7] facilitates relational data sharing without any schema
knowledge. Query matching and rewriting is based on keywords
(provided by the users). A two-step process is described: First
all nodes within a TTL radius are contacted, returning prospective
answer metadata. Then the user selects the ones that are relevant
to the local query and the requester directly contacts the selected
sources and asks for the results to the various rewritten versions
of the query. Instead, our approach employs an automated tech-
nique based on a combination of successive query rewriting and
query-schema matching, while it utilizes bandwidth-efficient walks
instead of the costly flooding scheme.

The works in [4] and [3] deal with data exchange between peers.

Table 2: Comparison for power-law graphs of variable size
method N Coverage Messages d

3K 0.60 16.8 7.3
Adaptive 5K 0.61 16.3 5.3

10K 0.61 16.8 5.0

3K 0.40 8.9 3.7
Naive 5K 0.41 9.7 3.9

10K 0.40 9.8 4.4

3K 0.20 7026 3.7
Brute 5K 0.19 11916 3.9

10K 0.19 24938 4.4

Ref. [4] presents a significant approach to the heterogeneity issue
in P2P data management and proposes a language for schema me-
diation between peers. Also, the authors present an algorithm for
query reformulation based on local-as-view as well as global-as-
view query answering. In [3], the authors describe mechanisms for
the declaration of data exchange policies on-the-fly based on ECA
rules. They also propose a general architecture for peer-databases
and elaborate on the establishment and abolishment of acquain-
tances between peers.

5. SUMMARY
This paper is a first approach to solve the query degradation

problem in P2P data management systems in the absence of global
schema information. By allowing peers to select the appropriate
rewritten version of the query to answer, we discover remote peers
on query propagation paths that are rich in interesting informa-
tion but veiled by poor path predecessors. Using these discoveries,
nodes seeking or holding similar information are gradually inter-
connected, increasing the quality of the returned results. Our solu-
tion is specifically suited for dynamic, unstructured environments,
since it is adaptive, bandwidth-efficient and operates in a complete
decentralized manner.

The next steps of the development of the presented process in-
clude theoretic as well as experimental work. Specifically, we plan
to design an automatic query-schema matching process adapted to
the particular needs of the described context. Additionally, we will
elaborate on the structure of theθ parameter as a function of the
characteristics of the schema matching mechanism of the peer and
the structure of the query. Beyond these, we are going to further
test the process in contexts similar to our motivating example.

ACKNOWLEDGMENTS
This material is based upon work supported in part by the U.S.
Army Research Laboratory and the U.S. Army Research Office un-
der contract/grant number DAAD19-01-1-0494

6. REFERENCES
[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A Scalable Content Addressable Network. In
SIGCOMM, 2001.

[2] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable Peer-To-Peer lookup
service for internet applications. InSIGCOMM, 2001.

[3] V. Kantere, I. Kiringa, J. Mylopoulos, A. Kementsientidis,
and M. Arenas. Coordinating P2P Databases Using ECA
Rules. InDBISP2P, 2003.

[4] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema
Mediation in Peer Data Management Systems. InICDE,
2003.

[5] R.J. Miller A. Kementsietsidis, M. Arenas. Mapping Data in
Peer-to-Peer Systems: Semantics and Algorithmic Issues. In
SIGMOD, 2003.

[6] E. Rahm and P.Bernstein. A Survey of Approaches to
Automatic Schema Matching. InVLDB Journal, 2001.

[7] B. Ooi, Y. Shu, K.L. Tan, and A.Y. Zhou. PeerDB: A
P2P-based System for Distributed Data Sharing. InICDE,
2003.

[8] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An
Approach to Universal Topology Generation. InMASCOTS,
2001.

[9] C. Jin, Q. Chen, and S. Jamin. Inet: Internet Topology
Generator. Technical Report CSE-TR443-00, Department of
EECS, University of Michigan, 2000.

[10] M. Ripeanu and Ian Foster. Mapping the gnutella network:
Macroscopic properties of large-scale peer-to-peer systems.
In IPTPS, 2002.

[11] Gnutella website: http://gnutella.wego.com.
[12] I. Tatarinov and A.Halevy. Efficient Query Reformulation in

Peer-Data Management Systems. InSIGMOD, 2004.

