
Probabilistic Knowledge Discovery and
Management for P2P Networks

Dimitrios Tsoumakos
Department of Computer Science

University of Maryland, College Park
dtsouma@cs.umd.edu

Nick Roussopoulos
Department of Computer Science

University of Maryland, College Park
nick@cs.umd.edu

Abstract— The Peer-to-Peer (P2P) paradigm dictates
a distributed network model which enables the sharing
of resources between its participants. In many cases,
the location of these resources is a non-trivial task
with network-wide effects. In this work, we describe the
Adaptive Probabilistic Searchmethod (APS) for search in
unstructured P2P networks. APS utilizes feedback from
previous searches to probabilistically guide future ones.
Besides being a very cost-efficient technique, it enables the
distribution and adaptation of search knowledge over the
network. Based on that, we provide examples where this
scheme can prove useful in more demanding environments.

I. INTRODUCTION

Peer-to-Peer (hence P2P) networking has been
growing rapidly in the last few years. Its success,
originally boosted by some popular file-sharing
applications (e.g., [1]), led to the emergence of
numerous systems that utilize P2P technology (e.g.,
[2]–[5]).

These systems have had a considerable and multi-
dimensional impact. Focusing on technical aspects,
ref. [6] reported that bandwidth consumption at-
tributed to popular file-sharing applications amounts
to a considerable fraction (up to 60%) of the to-
tal Internet traffic. So, while there exists a vast
amount of “untapped” potential around the Internet,
current resource-sharing applications consume huge
amounts of bandwidth. P2P technology can play a
key role in our efforts to tackle both issues, if care-
fully applied. In all cases, the first step involves the
efficient discovery of the various resources inside a
network.

Today, the most popular P2P applications operate
on unstructurednetworks. The basic characteristics
of these networks are the lack of 1) system control

over object placement, 2) guarantees about search
complexity and success. We should also note that
in such systems peers arrive and depart at will,
connecting in an ad-hoc fashion.

In [9], we described the problem of resource
discovery in unstructured P2P networks as well as
many proposed solutions. The shortcomings of most
current methods relate to either excessive message
consumption (during object location or index up-
dates) or inability to adapt to dynamic workloads
and environments.

In our work with APS [7], we proposed a new
search algorithm that achieves high performance
at low cost. In APS, a node deploysk walkers
for object discovery, but the forwarding process is
probabilistic instead of random. Peers effectively di-
rect walkers using feedback from previous searches,
while keeping information only about their neigh-
bors. This scheme exhibits many plausible charac-
teristics, namely high success rates, low bandwidth
consumption and robust behavior in fast-changing
environments.

In this paper, we describe this probabilistic for-
warding scheme based on walker success/failure
rates and how it can prove an efficient solution
for the general search problem. We go further
to identify various other knowledge resources that
can be used by our algorithm, both individually
and jointly. It is a fact that many contemporary
applications require (or would benefit from) the
utilization of more advanced features instead of a
single one. We identify some possible cases and
present modifications toAPSin order to meet these
goals.



Indices Initially Walkers’ finish After updates
A→B 30 20 20
B→C 30 20 20
C→D 30 20 20
A→E 30 20 40
E→F 30 20 40
A→G 30 30 30

Fig. 1. Search for an object usingAPS. The table depicts the change in index values, where X→Y denotes the index value stored at node
X for neighbor Y relative to the requested object.

II. THE APS METHOD

A. Algorithm Description

In APS, each node keeps a local index consisting
of one entry for each object it has requested, or
forwarded a request for, per neighbor. The value of
each entry reflects the relative probability of this
node’s neighbor to be chosen as the next hop in a
future request for the specific object.

Searching is based on the simultaneous deploy-
ment of k walkers and probabilistic forwarding:
The requester choosesk out of its N neighbors (if
k≥N, the query is sent to all neighbors) to forward
the request to. Each of these nodes evaluates the
query against its local repository and if a hit occurs,
the walker terminates successfully. On a miss, the
query is forwarded to one of the node’s neighbors.
This procedure continues until allk walkers have
terminated, either with a success or a failure. So,
while the requesting node forwards the query to
k neighbors, the rest of the nodes forward it to
only one. In the forwarding process, a node chooses
its next-hop neighbor(s) not randomly, but using
the probabilities given by its index values. At each
forwarding step, nodes append their identifiers in
the search message and keep a soft state about the
search they have processed. If two walkers from
the same request cross paths (i.e., a node receives a
duplicate message due to a cycle), the second walker
is assumed to have terminated with a failure and the
duplicate message is discarded.

Index values stored at peers are updated in the fol-
lowing manner: When a node forwards the request
to one ork of its neighbors, it pro-actively either
increases the relative probability of the peer(s) it
picked, assuming the walker(s) will be successful

(optimistic approach), or it decreases the relative
probability of the chosen peer(s), assuming the
walker(s) will fail (pessimisticapproach).

Upon walker termination, if the walker is suc-
cessful, there isnothingto be done in theoptimistic
approach. If the walker fails, index values relative
to the requested object along the walker’s path must
be corrected. Using information available inside the
search message, the last node in the path sends an
“update” message to the preceding node. This node,
after receiving the update message,decreasesits
index value for the last node to reflect the failure.
The update procedure continues along the reverse
path towards the requester, with intermediate nodes
decreasing their local index values relative to the
next hops for that walker. Finally, the requester de-
creases its index value that relates to its neighbor for
that walker. If we employ thepessimisticapproach,
this update procedure takes place after a walker
succeeds, having nodes increase the index values
along the walker’s path. There is nothing to be done
when a walker fails.

Figure 1 shows an example of how the search
process works. Node A initiates a request for an
object stored at node F using two walkers. Assume
that all index values relative to this object are
initially equal to 30 and thepessimisticapproach is
used. The paths of the two walkers are shown with
thicker arrows. During the search, the index value
for a chosen neighbor is reduced by 10. One walker
with path (A,B,C,D) fails, while the second with
path (A,E,F) finds the object. The update process
is initiated for the successful walker on the reverse
path (along the dotted arrows). First node E, then
node A increase the value of their indices for their
next hops (nodes F, E respectively) by 20 to indicate



object discovery through that path. In a subsequent
search for the same object, peer A will choose peer
B with probability 2/9 (= 20

20+40+30), peer E with
probability 4/9 and peer G with probability 3/9.

B. Characteristics and Performance

Along the paths of allk walkers, indices are
updated so that better next hop choices are made
with bigger probability. Our learning feature in-
cludes both positive and negative feedback from
the walkers in both update approaches. In thepes-
simistic approach for example, each node on the
walker’s path decreases the relative probability of its
next hop for the requested object along the search
path. If the walker succeeds, the update procedure
increases those index values by more than the
subtracted amount (positive feedback). Therefore,
both learning and unlearning is performed during
the search process:Learning helps in achieving
high performance and discovery of newly inserted
objects. Unlearning helps our process adjust to
object deletions and node departures, redirecting the
walkers elsewhere.

As an immediate consequence of that, more
knowledge is obtained with more questions. The
more feedback from the walkers, the more pre-
cise the indices become. That particularly suits the
discovery of popular objects in the P2P network,
which, according to studies [8], constitute over
60% of all searches. Another similar observation is
that all nodes participating in a search will benefit
from the process. This is a distinctive feature of
our method, with indices being constantly updated
using search results and not after object updates.
Therefore, a node that has never before requested an
object but is “near” peers that have done so, inherits
this knowledge by proximity.

APS requires no message exchange on any dy-
namic operation such as node arrivals or departures
and object insertions or deletions. The nature of
the indices makes the handling of these operations
simple: If a node detects the arrival of a new
neighbor, it will associate some initial index value
with that neighbor when a search will take place. If
a neighbor disconnects from the network, the node
simply removes all relative entries from its memory.
No action is required after object updates, since
indices are not related to file content. Thes-APS

50 60 70 80 90 100
Success Rate (%)

0

1

2

3

4

5

H
its

 p
er

 Q
ue

ry

Mod-BFS
Int-BFS
HG2
RWALKS
s-APS
DRLP

(a)

50 60 70 80 90 100
Success Rate (%)

40

60

80

100

120

140

M
es

sa
ge

s

Mod-BFS
Int-BFS
HG2
RWALKS
s-APS
DRLP

(b)

Fig. 2. Direct comparison of s-APS with various methods having
(a) similar messages or (b) similar hits

improvement further reduces message consumption
by adaptively switching between the optimistic and
pessimistic strategies and minimizing the update
messages. In [7] we also experimented with various
update functions for the index values.

Our main performance metrics are the success
rate, the average message consumption and the num-
ber of discovered objects per query. Most methods
are effective in one or two of these metrics, but
usually behave badly in the remaining one(s). While
there is no method that meets all requirements,
a good all-around performance is desirable. To
illustrate this point, we present results where we
compares-APSwith the methods described in [10]–
[14]. In Figure 2(a) we show the success rate and
hits per query for all algorithms when they display
very similar message consumption. We would like
our search schemes to be located around the upper-
right corner of this field. In Figure 2(b) we display
the success rate and messages per query for the
algorithms when they discover a similar amount of
objects. In this case, we would like a scheme to be



located around the lower-right corner of the graph.
We clearly notice thats-APSproves a most reliable
solution compared to these methods.

III. EXTENDING TO OTHER METRICS

The APSalgorithm, as described above, utilizes
a single source of knowledge, specifically path
success or failure for requested objects. We showed
that taking advantage of this property results in
good performance for the general resource location
problem. The specific characteristics of the indexing
scheme that we would like to capitalize relate to the
distributed computation of knowledge (knowledge
can be shared and reinforced by multiple peers),
small memory and bandwidth requirements and
the ability for both learning and unlearning. An
interesting question now is how could this indexing
scheme be applied, so that more information can be
utilized and more complex requirements be met.

One example whereAPScan be readily applied
relates to the problem of load balancing. This prob-
lem is well-known especially in the client-server
environment. In P2P networks, it is the case that
peers play the roles of both client and server. Data
replication allows frequent discovery of multiple
peers that hold a particular object. Naturally, not all
peers provide services of the same quality, so they
may differ in the number of concurrent connections
that they allow, their upload bandwidth, the quality
of content they store, etc. Peers that share (locally or
temporally) popular content or peers that store large
numbers of objects usually receive a large number of
requests. This results in performance degradation as
perceived by the requester nodes. TheAPSscheme
can be actively used to “direct” searches to different
parts of a neighborhood, thus implementing a form
of local load-balancing. Peers can change index
values and re-direct walkers to non-congested parts
of the network. In this case, index semantics will be
associated to congestion information for the overlay
links.

In reality, the decision of whether to choose a
particular path/host/object is not based on a single
metric. APScan be naturally extended to take into
account network or application-dependent informa-
tion. The interesting point in integrating more in-
formation is the fact that the scheme allows for its
concurrent re-computation. The more searches are

performed, the more accurate our indices become
for a specific metric. As an example, consider that
we want to incorporate a trust model into our
system. Each peer holds a valueti ∈ [0,1] for each
neighbor i. These values can have the meaning
of how much this specific peer is satisfied by its
recent transactions with its neighbors. Of course,
index semantics can be interpreted in many different
ways. The great advantage of such a scheme is the
ability to share information among peers (a peer
that just entered the network will take advantage
of already built indices in neighbors). Moreover,
indices along paths or located inside certain areas
can be aggregated for more complex computations
(e.g., computation of trust between distant peers,
voting scheme inside a peer-neighborhood, etc).

Of course, any combination of different (even
conflicting) metrics can be incorporated. All or
some of the following parameters could be consid-
ered (depending on the application): The capacity of
overlay links, the “trustworthiness” of each neighbor
(however this may be defined), its sharing ability,
network congestion, geographic location, etc. The
weight to be assigned to each of these properties
is application-specific; in a system where we worry
about bogus content, we should give preference to
peers with high trust values. If we plan on sharing
large amounts of data (e.g, ISO images for a new
Linux distribution), then we should aim for fast,
reliable connections (high-capacity links together
with large peer uptime).

We believe that this cost-efficient scheme can be
a basis for many large-scale, distributed commu-
nication protocols. For our future work, we plan
on pursuing the directions mentioned above and
report on the relative advantages and disadvantages
compared to existing schemes.

IV. SUMMARY

In this article we presented theAPSmethod for
search in unstructured P2P networks.APSdeploys
probabilistically directed walkers by utilizing infor-
mation from past searches. The key characteristic
of the scheme is that it allows for fast, joint learn-
ing, while being extremely bandwidth-efficient. We
went further to propose the extension of knowledge
integrated into the forwarding/learning process, as
well as some possible applications that could benefit



from this technique. We believe that this light-
weight probabilistic scheme can produce efficient
applications for many low-guarantee networks.

REFERENCES

[1] “Napster website: http://www.napster.com,” .
[2] “SETI@home web site: http://setiathome.ssl.berkeley.edu/,” .
[3] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet:

A Distributed Anonymous Information Storage and Retrieval
System,” Lecture Notes in Computer Science, 2001.

[4] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Wide-area cooperative storage with CFS,” inSOSP, 2001.

[5] R. Dingledine, M. Freedman, and D. Molnar, “The Free Haven
Project: Distributed Anonymous Storage Service,”Lecture
Notes in Computer Science, 2001.

[6] “The impact of file sharing on service provider networks. An
Industry White Paper, Sandvine Inc.,” .

[7] D. Tsoumakos and N. Roussopoulos, “Adaptive Probabilistic
Search for Peer-to-Peer Networks,” inP2P2003.

[8] J. Chu, K. Labonte, and B. Levine, “Availability and locality
measurements of peer-to-peer file systems,” inSPIE, 2002.

[9] D.Tsoumakos and N. Roussopoulos, “A Comparison of Peer-
to-Peer Search Methods,” inWebDB, 2003.

[10] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti, “A
local search mechanism for peer-to-peer networks,” inCIKM,
2002.

[11] S. Daswani and A. Fisk, “Gnutella UDP extension for scalable
searches (GUESS) v0.1,” .

[12] M. Stokes, “Gnutella2 specifications part one,” .
[13] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and

replication in unstructured peer-to-peer networks,” inICS, 2002.
[14] D. Menasće and L. Kanchanapalli, “Probabilistic Scalable P2P

Resource Location Services,”SIGMETRICS Perf. Eval. Review,
2002.


