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Abstract—The Peer-to-Peer (P2P) paradigm dictates over object placement, 2) guarantees about search
a distributed network model which enables the sharing complexity and success. We should also note that

of resources between its participgnts. In many cases,in such systems peers arrive and depart at will,
the location of these resources is a non-trivial task connecting in an ad-hoc fashion.

with network-wide effects. In this work, we describe the
Adaptive Probabilistic Searchmethod (APS) for search in In [9], we described the problem of resource

unstructured P2P networks. APS utilizes feedback from discovery in unstructured P2P networks as well as
previous searches to probabilistically guide future ones. many proposed solutions. The shortcomings of most
Besides being a very cost-efficient technique, it enables thecurrent methods relate to either excessive message

distribution and adaptation of search knowledge over the . . . | . .
network. Based on that, we provide examples where this consumption (during object location or index up-

scheme can prove useful in more demanding environments. dates) or inability to adapt to dynamic workloads
and environments.

. INTRODUCTION In our work with APS[7], we proposed a new

Peer-to-Peer (hence P2P) networking has be%qprch algorithm that achieves high performance
t low cost. INnAPS a node deployk walkers

growing rapidly in the last few years. Its success, . ) . ,
originally boosted by some popular file-sharin r object discovery, but the forwarding process is
applications (e.g., [1]), led to the emergence obabilistic instead of random. Peers effectively di-
numerous systems that utilize P2P technology (e. ,Ct walkers using feedback from previous searches,
[2]-[5]). hile keeping information only about their neigh-
These systems have had a considerable and miffs- This scheme exhibits many plausible charac-
dimensional impact. Focusing on technical aspectg!iStics, namely high success rates, low bandwidth
ref. [6] reported that bandwidth consumption gf£onsumption and robust behavior in fast-changing

tributed to popular file-sharing applications amounfdvironments.
to a considerable fraction (up to 60%) of the to- In this paper, we describe this probabilistic for-
tal Internet traffic. So, while there exists a vasvarding scheme based on walker success/failure
amount of “untapped” potential around the Internetates and how it can prove an efficient solution
current resource-sharing applications consume huge the general search problem. We go further
amounts of bandwidth. P2P technology can playta identify various other knowledge resources that
key role in our efforts to tackle both issues, if caresan be used by our algorithm, both individually
fully applied. In all cases, the first step involves thend jointly. It is a fact that many contemporary
efficient discovery of the various resources insideapplications require (or would benefit from) the
network. utilization of more advanced features instead of a
Today, the most popular P2P applications operamgle one. We identify some possible cases and
on unstructurednetworks. The basic characteristicpresent modifications tAPSin order to meet these
of these networks are the lack of 1) system contrgbals.



Indices | Initially | Walkers’ finish | After updates
A—B 30 20 20
B—C 30 20 20
C—D 30 20 20
A—E 30 20 40
E—F 30 20 40
A—G 30 30 30

Fig. 1. Search for an object usifPS The table depicts the change in index values, whereYXdenotes the index value stored at node
X for neighbor Y relative to the requested object.

Il. THE APS METHOD (optimistic approach), or it decreases the relative
probability of the chosen peer(s), assuming the
walker(s) will fail (pessimisticapproach).

In APS each node keeps a local index consisting Upon walker termination, if the walker is suc-
of one entry for each object it has requested, eessful, there isothingto be done in theptimistic
forwarded a request for, per neighbor. The value gpproach. If the walker fails, index values relative
each entry reflects the relative probability of thig the requested object along the walker’s path must
node’s neighbor to be chosen as the next hop irba corrected. Using information available inside the
future request for the specific object. search message, the last node in the path sends an

Searching is based on the simultaneous deploypdate” message to the preceding node. This node,
ment of k walkers and probabilistic forwarding:after receiving the update messagiecreasests
The requester choosdsout of its N neighbors (if index value for the last node to reflect the failure.
k>N, the query is sent to all neighbors) to forwardhe update procedure continues along the reverse
the request to. Each of these nodes evaluates pagh towards the requester, with intermediate nodes
query against its local repository and if a hit occurglecreasing their local index values relative to the
the walker terminates successfully. On a miss, thext hops for that walker. Finally, the requester de-
query is forwarded to one of the node’s neighborsreases its index value that relates to its neighbor for
This procedure continues until &l walkers have that walker. If we employ th@essimisticapproach,
terminated, either with a success or a failure. Sthis update procedure takes place after a walker
while the requesting node forwards the query tucceeds, having nodes increase the index values
k neighbors, the rest of the nodes forward it talong the walker’s path. There is nothing to be done
only one. In the forwarding process, a node choosghen a walker fails.
its next-hop neighbor(s) not randomly, but using Figure 1 shows an example of how the search
the probabilities given by its index values. At eacprocess works. Node A initiates a request for an
forwarding step, nodes append their identifiers wbject stored at node F using two walkers. Assume
the search message and keep a soft state abouttitia¢ all index values relative to this object are
search they have processed. If two walkers fromitially equal to 30 and th@essimisticapproach is
the same request cross paths (i.e., a node receivesed. The paths of the two walkers are shown with
duplicate message due to a cycle), the second walligicker arrows. During the search, the index value
is assumed to have terminated with a failure and tf@ a chosen neighbor is reduced by 10. One walker
duplicate message is discarded. with path (A,B,C,D) fails, while the second with

Index values stored at peers are updated in the fpiath (A,E,F) finds the object. The update process
lowing manner: When a node forwards the requastinitiated for the successful walker on the reverse
to one ork of its neighbors, it pro-actively eitherpath (along the dotted arrows). First node E, then
increases the relative probability of the peer(s) mode A increase the value of their indices for their
picked, assuming the walker(s) will be successfukext hops (nodes F, E respectively) by 20 to indicate

A. Algorithm Description




object discovery through that path. In a subsequent S v —

search for the same object, peer A will choose peer Foo* + .
B with probability 2/9 (=555335): Peer E with us .
probability 4/9 and peer G with probability /3. i l
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B. Characteristics and Performance
+ s-APS

Along the paths of allk walkers, indices are ¥ DRLP
updated so that better next hop choices are made ,
with bigger probability. Our learning feature in- i
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next hop for the requested object along the search 2o s © N

path. If the walker succeeds, the update procedure
increases those index values by more than the
subtracted amount (positive feedback). Therefore,
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both learning and unlearningis performed during I *DRP |

the search procesd:earning helps in achieving o0 |- N |

high performance and discovery of newly inserted L .

objects. Unlearning helps our process adjust to aws——b— L

object deletions and node departures, redirecting the Sucoess Rate (%)

walkers elsewhere. Fig. 2. Direct comparison of s-APS with various methods having

i ' imil b) similar hit
As an immediate consequence of that, mof& Smiarmessages or (b) similar hits

knowledge is obtained with more questions. The
more feedback from the walkers, the more pre-
cise the indices become. That particularly suits tf@provement further reduces message consumption
discovery of popular objects in the P2P networley adaptively switching between the optimistic and
which, according to studies [8], constitute ovepessimistic strategies and minimizing the update
60% of all searches. Another similar observation fgessages. In [7] we also experimented with various
that all nodes participating in a search will benefitpdate functions for the index values.
from the process. This is a distinctive feature of Our main performance metrics are the success
our method, with indices being constantly updatedte, the average message consumption and the num-
using search results and not after object updatésr of discovered objects per query. Most methods
Therefore, a node that has never before requestedcham effective in one or two of these metrics, but
object but is “near” peers that have done so, inheriisually behave badly in the remaining one(s). While
this knowledge by proximity. there is no method that meets all requirements,
APS requires no message exchange on any dy-good all-around performance is desirable. To
namic operation such as node arrivals or departuithgstrate this point, we present results where we
and object insertions or deletions. The nature obmpares-APSwith the methods described in [10]-
the indices makes the handling of these operatiogdsgl]. In Figure 2(a) we show the success rate and
simple: If a node detects the arrival of a newits per query for all algorithms when they display
neighbor, it will associate some initial index valueery similar message consumption. We would like
with that neighbor when a search will take place. tur search schemes to be located around the upper-
a neighbor disconnects from the network, the nodight corner of this field. In Figure 2(b) we display
simply removes all relative entries from its memoryhe success rate and messages per query for the
No action is required after object updates, sin@gorithms when they discover a similar amount of
indices are not related to file content. TRAPS objects. In this case, we would like a scheme to be



located around the lower-right corner of the grapperformed, the more accurate our indices become
We clearly notice thas-APSproves a most reliablefor a specific metric. As an example, consider that
solution compared to these methods. we want to incorporate a trust model into our
system. Each peer holds a valige [0,1] for each

IIl. EXTENDING TO OTHER METRICS neighbori. These values can have the meaning

The APSalgorithm, as described above, utilizesf how much this specific peer is satisfied by its
a single source of knowledge, specifically patltecent transactions with its neighbors. Of course,
success or failure for requested objects. We showiedex semantics can be interpreted in many different
that taking advantage of this property results mways. The great advantage of such a scheme is the
good performance for the general resource locatiability to share information among peers (a peer
problem. The specific characteristics of the indexinat just entered the network will take advantage
scheme that we would like to capitalize relate to thef already built indices in neighbors). Moreover,
distributed computation of knowledge (knowledgendices along paths or located inside certain areas
can be shared and reinforced by multiple peerggn be aggregated for more complex computations
small memory and bandwidth requirements ar{d.g., computation of trust between distant peers,
the ability for both learning and unlearning. Arvoting scheme inside a peer-neighborhood, etc).
interesting question now is how could this indexing Of course, any combination of different (even
scheme be applied, so that more information can benflicting) metrics can be incorporated. All or
utilized and more complex requirements be met. some of the following parameters could be consid-

One example wherdPScan be readily applied ered (depending on the application): The capacity of
relates to the problem of load balancing. This proloverlay links, the “trustworthiness” of each neighbor
lem is well-known especially in the client-servethowever this may be defined), its sharing ability,
environment. In P2P networks, it is the case thaetwork congestion, geographic location, etc. The
peers play the roles of both client and server. Dateeight to be assigned to each of these properties
replication allows frequent discovery of multiplas application-specific; in a system where we worry
peers that hold a particular object. Naturally, not allbout bogus content, we should give preference to
peers provide services of the same quality, so thpgers with high trust values. If we plan on sharing
may differ in the number of concurrent connectiorlarge amounts of data (e.g, ISO images for a new
that they allow, their upload bandwidth, the qualitizinux distribution), then we should aim for fast,
of content they store, etc. Peers that share (locallyretiable connections (high-capacity links together
temporally) popular content or peers that store largéth large peer uptime).
numbers of objects usually receive a large number ofWe believe that this cost-efficient scheme can be
requests. This results in performance degradationaa®asis for many large-scale, distributed commu-
perceived by the requester nodes. AReSscheme nication protocols. For our future work, we plan
can be actively used to “direct” searches to differeph pursuing the directions mentioned above and
parts of a neighborhood, thus implementing a forneport on the relative advantages and disadvantages
of local load-balancing. Peers can change indeempared to existing schemes.
values and re-direct walkers to non-congested parts
of the network. In this case, index semantics will be V.- SUMMARY
associated to congestion information for the overlay In this article we presented th&PS method for
links. search in unstructured P2P network$?S deploys

In reality, the decision of whether to choose probabilistically directed walkers by utilizing infor-
particular path/host/object is not based on a singigation from past searches. The key characteristic
metric. APScan be naturally extended to take intof the scheme is that it allows for fast, joint learn-
account network or application-dependent informag, while being extremely bandwidth-efficient. We
tion. The interesting point in integrating more inwent further to propose the extension of knowledge
formation is the fact that the scheme allows for iisitegrated into the forwarding/learning process, as
concurrent re-computation. The more searches avell as some possible applications that could benefit



from this technique. We believe that this light-
weight probabilistic scheme can produce efficient
applications for many low-guarantee networks.
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