
J. Parallel Distrib. Comput. 71 (2011) 424–437
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Online querying of d-dimensional hierarchies✩

Katerina Doka ∗, Dimitrios Tsoumakos, Nectarios Koziris
Computing Systems Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Greece

a r t i c l e i n f o

Article history:
Received 4 February 2010
Received in revised form
3 October 2010
Accepted 12 October 2010
Available online 16 October 2010

Keywords:
Peer-to-Peer
Distributed hash tables
Concept hierarchies
Data warehousing

a b s t r a c t

In this paper we describe a distributed system designed to efficiently store, query and update
multidimensional data organized into concept hierarchies and dispersed over a network. Our system
employs an adaptive scheme that automatically adjusts the level of indexing according to the granularity
of the incoming queries, without assuming any prior knowledge of the workload. Efficient roll-up and
drill-down operations take place in order to maximize the performance by minimizing query flooding.
Updates are performed on-line, with minimal communication overhead, depending on the level of
consistency needed. Extensive experimental evaluation shows that, on top of the advantages that a
distributed storage offers, our method answers the vast majority of incoming queries, both point and
aggregate ones, without flooding the network and without causing significant storage or load imbalance.
Our scheme proves to be especially efficient in cases of skewed workloads, even when these change
dynamically with time. At the same time, it manages to preserve the hierarchical nature of data. To the
best of our knowledge, this is the first attempt towards the support of concept hierarchies in DHTs.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Nowadays data are produced at an astounding rate [17]:
Market globalization, business process automation, the grow-
ing use of sensors and other data-producing devices, along with
the increasing affordability of hardware have contributed to
this continuous trend. On the other hand, information environ-
ments themselves are distributed. Business groups consist of
multiple companies around the world, which, although operat-
ing autonomously, still need to provide the headquarters with
summarized information for decision making. Indeed, large com-
panies aswell as scientific organizations heavily rely on data analy-
sis in order to identify behavioral patterns and discover interesting
trends/associations.

Data warehousing has become a vital component of every
organization, as it contributes to business-oriented decision-
making. A data warehouse is a central repository that hosts
immense volumes of historical data from multiple sources and
provides tools for their aggregation and management at different
levels of granularity. The basic abstraction in data-warehousing is
data cubes, multidimensional arrays in the form of which data is
usually viewed. Data cubes are characterized by their dimensions,
which represent the notions that are important to an organization
for managing its data (e.g., time, location, product, customer, etc.)

✩ This is an extended version of the work presented in WIDM’08.
∗ Corresponding author.

E-mail addresses: katerina@cslab.ece.ntua.gr (K. Doka),
dtsouma@cslab.ece.ntua.gr (D. Tsoumakos), nkoziris@cslab.ece.ntua.gr
(N. Koziris).

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.10.005
and the facts, which are the numerical quantities to be analyzed
(e.g., sales, profit, etc.). They allow for efficient summarization of
data by reducing the dimensions and producing aggregate views
of the data. However, data can be presented in an even more fine-
grained manner through the use of concept hierarchies.

A concept hierarchy defines a sequence of mappings from more
general to lower-level concepts. Fig. 1 shows a simple hierarchy
for the location dimension, where Address < ZipNo <
City < Country and one for product, where Product <
Brand < Category. Concept hierarchies are important because
they allow the structuring of information into categories, thus
enabling its search and reuse. They allow users to view a given
cube at different levels of granularity: With the roll-up operation
we climb up to a more summarized level of the hierarchy, while a
drill-down navigates to lower levels of increased detail. The drilling
paths are usually defined by the hierarchieswithin the dimensions.
The mappings of a concept hierarchy are usually provided by
application or domain experts.

Yet, data warehouses present a strictly centralized and off-
line approach in terms of data location and processing: Views
are usually calculated on a daily or weekly basis after the
operational data have been transferred from various locations and,
surprisingly, this practice is still considered to be state-of-the-art.
The ever-growing volumes of data along with the requirement
for constant data analysis in order to immediately detect real-
time changes in trends imply the need for an always-on, real-
time data access and support system for concurrent processing of
queries. These challenges have given birth to the idea of creating
distributed data-warehouse-like systems deployed on a shared-
nothing, commodity hardware architecture, giving the advantage
of scalability and robustness at low cost.

http://dx.doi.org/10.1016/j.jpdc.2010.10.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:katerina@cslab.ece.ntua.gr
mailto:dtsouma@cslab.ece.ntua.gr
mailto:nkoziris@cslab.ece.ntua.gr
http://dx.doi.org/10.1016/j.jpdc.2010.10.005

K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 424–437 425
Country Category

Brand

Product

City

ZipNo

Address

a b

Fig. 1. A concept hierarchy for dimension (a) Location (b) Product.

Some works in the field propose distributed warehousing
systems (e.g., [15,4,2]), but the warehouse and its aggregation,
update and querying functionality remain centralized. On the
other hand, there has been considerable work in sharing relational
data using both structured (i.e., DHTs) and unstructured (i.e.,
Gnutella-style) Peer-to-Peer overlays, combining the advantages
of a distributed and resilient solution with the performance of
storing large volumes of data in database systems. Peer Database
systems (e.g., [16,14,24]) represent a new trend in which peers
maintain parts of a central database and communicate with each
other in a distributed, fault-tolerant manner. Nevertheless, no
special consideration has been given to multidimensional data
supporting hierarchies and, until now, Peer Databases that rely
on DHT functionality are unable to directly support queries on
multiple dimension hierarchies.

In this paper we investigate the problem of indexing and
querying such data in a way that preserves the semantics of the
hierarchies and is efficient in retrieving the requested values, for
both point and aggregate queries. To that end, we propose the
Hierarchical Peer-to-Peer Indexing System (HiPPIS), a DHT-based
system that enables efficient storage and querying over multiple
dimensions characterized by specific hierarchies. Thus the system
benefits from the inherent characteristics of the Peer-to-Peer
architecture, such as scalability, fault tolerance and availability
relying solely on commodity nodes. HiPPIS nodes actively monitor
the granularity of posed queries in order to adjust the indexing
level to the most beneficial one. Combined with soft-state indices
which are dynamically created after query misses, our system
manages tominimize the number of flooding operations necessary
to provide exact answers. Furthermore, HiPPIS does not invalidate
the semantics of the stored hierarchies and allows for distributed
knowledge mining. To our knowledge, this is the first attempt
towards the support of concept hierarchies in DHTs.

1.1. Motivation and problem description

As a motivating scenario, let us consider a geographically
dispersed business or application that produces immense amounts
of data, e.g., a multinational sales corporation or a data-collection
facility that processes data from Internet routers. We argue for
a completely decentralized approach, where users can perform
on-line queries on the multiple dimensions, simple yet important
mining operations (such as roll-up and drill-down on the defined
hierarchies) and calculate aggregate views that return important
data summaries. Such an application, besides eliminating the
central storage and processing bottleneck and minimizing human
coordination, enables querying the data in real time, even if some
of the resources are unavailable.

Let us assume that the company’s database contains data
organized along the location and product dimensions (see
Fig. 1). In a plain DHT system, one would have to choose a level of
the suggested hierarchy in order to hash all tuples to be inserted to
the systemand repeat this for eachdimension. Assuming the tuples
are hashed according to the city and category attributes, there
will be a node responsible for tuples containing the value Athens,
one for Milan, etc., as well as nodes responsible for Electronics,
Household, etc. This structure can be very effectivewhen answering
queries referring to the chosen levels of insertion (and even
so, intersection of tuples will be necessary), whereas queries
concerning other hierarchy levels demand global processing.

The solution of multiple insertions of each tuple by hashing
every hierarchy value of each dimension is not viable: As the
number of dimensions and levels increase, so does the redundancy
of data and the storage sacrificed for this purpose. Furthermore,
while point queries would be answered without global processing,
this scheme fails to encapsulate the hierarchy relationships: One
cannot answer simple queries, such as ‘‘Which country is Patras
part of ’’ or ‘‘What is the total revenue for ‘Electronics’ products sold
anywhere’’.

1.2. Sketch of HiPPIS and contribution summary

Our work intends to describe a complete system that enables
storing and querying hierarchical data in DHTs. HiPPIS undertakes
the task of storing and indexing bulk data in the form of a fact table
(e.g., Table 1) to multiple sites over the network.

Peers initially index at a default (pivot) level combination.
Inserted tuples are internally stored in a hierarchy-preserving
manner. Query misses are followed by soft-state pointer creations
so that future queries can be served without re-flooding the
network. Peers maintain local statistics which are used in order
to decide if a re-indexing (to a different combination of hierarchy
levels) is necessary, according to the current query trend. For
instance, if the ratio of queries for ⟨country, brand⟩ exceeds a
threshold (assuming the pivot level is ⟨city, category⟩), data
would be re-indexed according to that level combination so that
most requests would be directly answered. Besides answering
point queries at different granularities, HiPPIS can answer group-
by queries, such as ‘‘Give me the sales registered for ‘Greece’ for ALL
products’’.

It has been widely observed that most Internet-scale appli-
cations, including P2P ones, exhibit highly skewed workloads
(e.g., [8,26], etc.). HiPPIS indexes popular levels and uses soft-state
indices to answer the less popular requests. It adapts to the incom-
ingworkload as awhole, without assuming any prior knowledge of
the data or workload distributions and without any precomputa-
tions on the data. The contribution of our work can be summarized
in the following:
• It addresses the problem of hierarchical data search in DHT

systems. Even though DHTs bind the number of query hops
to the logarithm of the size of the overlay, they are unable to
directly support queries on dimension hierarchies, since they
perform exact match lookups. Any other case would require
message- and time-consuming query flooding over the whole
network. Our technique, taking into account user preferences
and sensing potential overall tendencies, allows reorganization
of the indexing structure in favor of resolving queries for the
most popular data. It also manages to preserve the useful
hierarchy-specific information that hashing destroys. Either
through hashing on a single or multiple levels of the hierarchy,
a naive data insertion would fail to preserve the associations
between the stored keys. By using a tree-like data structure to
store data and maintain indices to related keys, our system is
able to respond to more complex, hierarchy-based queries.
• It allows for on-line updates, unlike the conventional update

technique in datawarehousing,which dictates an offline update
application on a daily or weekly basis. The communication
overhead depends on the level of consistency needed by the
application.
• It presents a thorough experimental section where we clearly

identify the advantages of our proposed system in a variety

426 K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 424–437
of workloads (variable levels of skew, dynamic changes, etc.),
datasets and update setups. We also register the induced data
and load distributions across the nodes of the overlay. HiPPIS
achieves a high ratio of exact-match queries in a variety of
workloads, even when these change dynamically with time.
We show that our scheme is particularly efficient with highly
skewed data distributions which are frequently documented
in the majority of applications, without inducing significant
load or storage imbalance among the network nodes.Moreover,
even under high update rates, the freshness of the query
responses remains acceptable.

The rest of the paper is organized as follows: The following
section goes through the related literature. Section 3 describes
our approach in a more detailed manner. In Section 4 we discuss
its requirements together with protocol enhancements. Section 5
presents our evaluation. Finally, Section 6 concludes the paper.

2. Related work

In [12], the data cube operator is introduced. The data cube
generalizes many useful operators, namely aggregation, group
by, roll-ups, drill-downs, histograms and cross-tabs. It consists
of several independent attributes grouped into dimensions and
some dependent attributes which are called measurements. Since
the number of the possible views increases exponentially with
the number of dimensions, materialization is commonly used in
order to speed-up query processing. This approach fails in a fully
dynamic environmentwhere the queries are not known in advance
or when the number of possible queries becomes very large.

Several indexing schemes have been presented for storing data
cubes (e.g., [18,33]). However, only few support both aggregate
queries and hierarchies. In [27], hierarchies are exploited to enable
faster computation of the possible views and a more compact
representation of the data cube. The Hierarchical Dwarf contains
views of the data cube corresponding to a combination of the
hierarchy levels. Another approach is the DC-Tree [10], a fully
dynamic index structure for data warehouses modeled as data
cubes. It exploits concept hierarchies across the dimensions of
a data cube. In this work, the attributes of a dimension are
partially ordered with respect to the valid hierarchy schema for
each dimension. The DC-tree stores one concept hierarchy per
dimension and assigns an ID to every attribute value of a data
record that is inserted. In [20,21], the authors present a novel
lattice traversal scheme, in order to construct complete data cubes
with arbitrary hierarchies. These approaches are very efficient in
answering both point and aggregate queries over various data
granularities, but do so in a strictly centralized and controlled
environment.

Recently, effort has been made to exploit parallel processing
techniques for data analysis by integrating query constructs from
the database community into MapReduce-like software. The Pig
project at Yahoo [23], the SCOPE project at Microsoft [7] and
the open-source Hive project [31] mainly focus on language
issues, addressing the creation of SQL interfaces on top of
Hadoop [13]. HadoopDB [3] proposes a system-level hybrid
approach, where MapReduce and parallel DBMSs are combined.
SQL queries are translated with the use of Hive into MapReduce
jobs, which are eventually executed on a single node, running a
DBMS. Some vendors (e.g., Vertica, AsterData, etc.) have already
presented shared-nothing parallel databaseswith regards to Cloud
computing. However, such technologies are inherently batch-
oriented, as they can provide large amount of processing power,
but do not guarantee real-time responses. Parallel database
solutions, on the other hand, exhibit reduced robustness in failures
and do not operate in heterogeneous environments.

The notion of a distributed Data Warehouse has been used
in the past, although a more accurate characterization for the
proposed systemswould be ‘cooperative’, rather than ‘distributed’.
In [15], the authors consider a number of DWs and peers, forming
an unstructured P2P overlay for caching OLAP views. Views are
divided in chunks and peers retrieve cached chunks from the
network and the DW if needed. In [4], the authors define the
distributed data warehouse as a structure that consists of multiple
local data warehouses adjacent to data collection points and
a coordinator site, responsible for interacting with each of the
local sites and for correlating and aggregating query results. A
similar approach is described in [9],where a two-layer architecture
consisting of multiple local data warehouses and a global one
is proposed. All these approaches perform some hybrid query
processing model by allowing requests to route to different cites.
[2] describes a P2P platform for managing distributed repositories
of XML and semantic Web data, where various data processing
building blocks are integrated as Web services. Yet, none of the
above works distributes the warehouse structure itself, keeping
the processing cites centralized.

The sharing of relational data using both structured and
unstructured P2P overlays is addressed in a number of papers.
PIER [14] proposes a distributed architecture for relational
databases supporting operators such as join and aggregation of
stored tuples. A DHT-based overlay is used for query routing.
Combined with a Gnutella-like overlay in [19], PIER has also
been used for common file-sharing. The unstructured overlay is
used for locating popular items while the PIER search engine
favors the publishing and discovery of rare items. PeerDB [24]
and GrouPeer [16] feature relational data sharing without schema
knowledge, utilizing query rewriting. GridVine [1] hashes and
indexes RDF data and schemas, and pSearch [29] represents
documents as well as queries as semantic vectors. A recent work
stressing the need for P2P OLAP is [32], which mainly focuses on
answeringOLAPqueries over a network of datawarehouses that do
not share the same schema. All these approaches offer significant
and efficient solutions to the problem of sharing structured and
heterogeneous data over P2P networks. Nevertheless, they do not
deal with the special case of hierarchies over multidimensional
datasets.

3. The hierarchical peer-to-peer indexing system

3.1. Necessary notation

Our data spawn the d-dimensional space. Each dimension i is
organized along Li + 1 hierarchy levels: Hi0,Hi1, . . . ,HiLi , with
Hi0 being the special ALL (∗) value. We assume that our database
comprises of fact table tuples of the form:
⟨tupleID,D11 . . .D1L1 , . . . ,Dd1 . . .DdLd , fact1, . . . , factk⟩, where

Dij, 1 ≤ i ≤ d and 1 ≤ j ≤ Li is the value of the jth level
of the ith dimension of this tuple and facti, 0 ≤ i ≤ k are the
numerical facts that correspond to it (we assume that the numeric
values correspond to the more detailed level of the cube). Our
goal is to efficiently insert and index these tuples so that we can
answer queries of the form: q = ⟨q1, q2, . . . , qd⟩, where each
query element qi can be a value from a valid hierarchy level of the
ith dimension, including the ∗ value (dimensionality reduction):
qi = Dix, 0 ≤ x ≤ Li.

3.2. Data insertion

The insertion of a data tuple (or a pointer to the real location
of it) is performed as follows: Upon creation of the database,
a combination of levels is globally selected. This is called pivot
P = ⟨p1, p2, . . . , pd⟩ where each pivot element pi can be a valid
hierarchy level of the ith dimension (including the special ∗ value):
pi = Hiy, 0 ≤ y ≤ Li. The ID of each tuple to be inserted is the
hashed value of the tuple values corresponding to the pivot level.
The DHT then assigns each tuple to the node with ID numerically

K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 424–437 427
Table 1
Sample fact table.

TupleID Location Product Fact
Country City Zip Category Brand Sales

ID2 Greece Athens 16674 Electronics Apple 11,500
ID5 Greece Athens 15341 Electronics Sony 1,900
ID51 Greece Athens 15341 Electronics Philips 22,900
ID31 Greece Athens 16732 Household AEG 2,450
ID55 Greece Larissa 20100 Electronics Sony 12,100
ID190 Greece Patras 19712 Household Unilever 1,990
ID324 Greece Athens 17732 Electronics Philips 2,450
ID501 Greece Athens 17843 Electronics Sony 12,000
ID712 Greece Athens 17843 Electronics Apple 32,000
a b

c

Fig. 2. The forest structure at node responsible for Athens, Electronics after
the insertion of (a) the first tuple, (b) the second tuple and (c) all tuples of Table 1.

closest to this value. For tuples inserted at a later stage, nodes can
be informed of P from one of their neighbors in the overlay.

Inserted data are stored in the form of trees that preserves
their hierarchical nature. Nodes storemultiple forests, one for each
d-valued combination it is responsible for. As a consequence, each
distinct value of the pivot level combination corresponds to a forest
that reveals part of the hierarchy. Each forest consists of d rooted
trees, one for each dimension. To see this pictorially, let us refer to
the example depicted in Fig. 2. Let us assume the data contained
in Table 1 and the hierarchy described in Section 1 (without the
last level of each dimension) with ⟨city, category⟩ to be the globally
defined pivot level. The first tuple to be inserted is assigned an
ID that derives from applying our hash over the value ‘Athens’ ‖
‘Electronics’ and forms a forest with two plain lists (Fig. 2(a)). As
data items with the same ID keep arriving at this node, different
values at levels lower in the hierarchy than the pivot level create
branches, thus forming a tree structure (Fig. 2(b) and (c)). The trees
of a forest are connected (in order to retrieve the corresponding
facts) through the tuple IDs, depicted as a linked list in Fig. 2.

3.3. Data lookup and indexing mechanism

Queries concerning P are defined as exact match queries and
can be answered within O(logN) forwarding steps. Since we have
included the ∗ as the top level of the hierarchy of each dimension,
P may include ∗ in any of its d possible values. Therefore, assuming
the query elements qi = Dix and the respective pivot level
elements pi = Hiy, the query is an exact match one if x = y, in
the case it comprises of exact values, or if pi = ∗. Queries on
any of the other level combinations cannot be answered unless
flooded across the DHT. In order to amortize the cost of this
operation and facilitate such requests, we introduce soft-state
indices to our proposed structure. These indices are created on
demand, as soon as a query for non-pivot level data is answered.
After the answers from the corresponding nodes are received
through overlay flooding, the query initiator hashes the value of
the requested key and sends the IDs of the nodes that answered
the query to the node responsible for that key. So, essentially, we
term indices the pointers from a node that should hold the answer
to a query, had the pivot been the queried level combination, to the
node or nodes that actually store the answer.

Soft-state indices give users the illusion that the queried values
are actually hashed and retrieved in a fast manner. In reality,
O(logN) steps are required to locate the indices which are then
used to retrieve the multiple tuples required to compute the
correct result set. The number of indices followed depends on
the query and P: If the query attributes are of equal/smaller level
than the respective pivot level elements, only a single pointer will
exist. Otherwise multiple (the exact number depends on the data)
pointers need be followed.

The created indices are soft-state, in order to minimize the
redundant information. This means that they expire after a
predefined period of time (Time-to-Live or TTL), unless a new
query for that specific value is initiated, in which case, the index
is renewed. This mechanism ensures that changes in the system
(e.g., data location, node unavailabilities, etc.) will not result in
stale indices, affecting its performance. Apparently, in cases of
very large datasets and uniform query distributions the index size
can grow large. While memory becomes a cheaper commodity by
the day, the plain size of data discourages an ‘‘infinite’’ memory
allocation for indices. After the number of created indices per node
has reached the limit Imax, the creation of a new index results in
the deletion of the oldest one. Calibrating Imax for performance
without increasing it uncontrollably entails knowledge of our data
(e.g., how skewed each hierarchy is). Thus, the system tends to
preserve the most ‘‘useful’’ indices, namely the ones that refer
to the most frequently used data items. The HiPPIS lookup and
indexing algorithm is presented in Algorithm 1.

As an example, let us assume the same hierarchy as before,
with ⟨city, category⟩ as P . When querying for ⟨‘16674’, ‘Apple’⟩,
we discover that no such key exists in the DHT. Flooding is
performed and the node ‘Athens’ ‖ ‘Electronics’ answers with the
corresponding tuple. The initiator, which now knows the ID of the
node that answered the query, forwards it to the node responsible
for the value ‘16674’ ‖ ‘Apple’ which now has an index pointing
to the node ‘Athens’ ‖ ‘Electronics’. Thus, in case of another query
referring to the same value, the time and bandwidth consuming

428 K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 424–437
Fig. 3. Example of soft-state index creation using our example.

flooding is avoided and the response can be provided quickly and
efficiently, within logN+C hops.

Algorithm 1 HiPPIS Lookup and Indexing Algorithm
q = ⟨q1, q2, . . . , qd⟩: the query to be resolved
P = ⟨p1, p2, . . . , pd⟩: the pivot level combination
r: remote node
Kr,exact , Kr,ind: set of keys held and indexed by remote node
respectively
if ∃Ps ⊆ P : ∀pi ∈ Ps, pi = ∗ ∧ qi ≠ ∗ and the rest of the
attributes in (P − Ps) are of the same level then
IDq ← hash(q) where qi is replaced by ∗
DHT_route(LookupMessage) to r responsible for IDq
local processing by r and possible answers returned

else
IDq ← hash(q),
DHT_route(LookupMessage(IDq))
local processing by r
if IDq /∈ Kr,exact then

if IDq /∈ Kr,ind then
flood(q), local processing by each r
answers returned by set of nodes R
DHT_route(IndexMessage(IDq → R))
Receiver nodes add IDq to Kr,ind

else
local processing, tuples returned

end if
else

tuples returned
end if

end if

The same procedure takes place when the query concerns a
value that lies higher in the hierarchy than the pivot level. The
query for ⟨‘Greece’, ∗⟩ is routed to the node responsible, where
no answer is available. Flooding is performed and the nodes that
contain relevant tuples are discovered. Finally, the data satisfying
the query are returned to the initiator and multiple indices are
built. Both these cases are shown pictorially in Fig. 3, where the
black nodes are the ones that store the actual data, whereas the
nodes holding pointers are depicted in gray.

3.4. Reindexing operation

In a data warehouse, the distribution of data or queries may
vary over time. Thus, it is possible that the choice of P , which is
done once at the beginning, does not favor performance. HiPPIS
is adaptive to the query distribution, supporting dynamic changes
in the pivot level, without assuming any prior knowledge, being
solely based on locally maintained statistics. By shifting to a
different level combinationwe aim at increasing the ratio of exact-
match queries, reducing flooding and boosting performance. The
exact procedure is presented in Algorithm 2.
Algorithm 2 HiPPIS Reindexing Algorithm
P: current pivot level combination
popularityci : popularity of level combination ci
Clocal : c0 < c1 < · · · < cmax ranked level combinations
according to local popularity
if popularitycmax - popularityP > threshold then
flood(SendStatsMessage) and collect global statistics
Cglobal : c0 < c1 < · · · < cmax ranked level combinations
according to global popularity
calculate threshold
if popularitycmax-popularityP > threshold then
determine new pivot level Pnew
if Pnew ≠ P then
flood(ReindexingMessage(Pnew))
P ← Pnew , rehashing of tuples

end if
end if

end if

If the number of queries initiated by a node regarding level
combinations different than P exceeds the number of queries for
P by some threshold, this node considers the possibility of a new
partitioning. Each node determines the popularity of each level
combination (

∏d
i=0 Li exist) by measuring the number of queries

it has locally initiated within the most recent time-frame W . This
time-frame should be properly selected to perceive variations of
query distributions and, at the same time, stay immune to instant
surges in load.

If the percentage of the queries on the most popular level
combination cmax is more than threshold% of the respective pivot
popularity, the node is positive to the potential of adopting another
pivot. If this is the case, reindexing enters its second phase, in
which the local intuition must be confirmed (or not) using global
statistics. The node whose local information indicates a possible
shift of P sends a SendStats message to all system nodes. The
initiator, after collecting the statistics from all nodes, redefines
cmax and repeats the aforementioned procedure, enhanced with a
strategy for the optimal pivot selection, thoroughly described in
the next section. In the case that a new P is selected, reindexing is
performed respectively by all nodes.

It should be noted here that the first phase of the reindexing
process is not decisive for the selection of the new potential
pivot level; it is rather used as an indication of an imbalance that
should be further investigated. Thus, we assume that nodes act
altruistically, not only by reporting their true statistics, but also
in the sense that they may trigger a change of pivot that may not
reflect their personal preferences.

The initiating node floods aReindexmessage to force all nodes to
change their pivot. Each node that receives this message traverses
its tuples, finds all the values of the level combination that will
constitute the new reference point and rehashes them one by one,
sending the tuples to the corresponding nodes. Assuming that the
size of the dataset |D| ≫ N2,N being the size of the network,
the preferred method to perform this is to send at most N − 1
messages per node, grouping the tuples by recipient. After the node
completes the procedure, it erases all its data and indices.

Back to our example, if the node ‘Athens’ ‖ ‘Electronics’ receives a
Reindex message for ⟨city, brand⟩, it runs through its tuples and
discovers that the values corresponding to that level combination
are ‘Athens’ ‖ ‘Sony’, ‘Athens’ ‖ ‘Philips’ and ‘Athens’ ‖ ‘Apple’.
The values are hashed and the corresponding nodes are now
responsible for the tuples containing these values (Fig. 4).

3.5. Locking

In order to ensure the correctness of the answers during the
reindexing process and to avoid simultaneous reindexings by

K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 424–437 429
a b c

Fig. 4. The produced forest structures after reindexing.
multiple nodes, we introduce a locking mechanism. After a node
decides to perform reindexing according to the global statistics, it
first sends a Lock message to all system nodes and then proceeds
to it. Once a node receives the Lockmessage, it changes its state to
LOCKED and maintains it for a predefined period of time (related
to the network size), which we assume is adequate to cover the
time needed for thewhole system to finish reindexing and to reach
a stable state. During this time, locked nodes continue answering
queries through flooding. Therefore the system constantly remains
online.

To cope with the issue of possible concurrent locks, we adopt
a simple resolution mechanism: Since each Lock message, upon
creation by the initiator, is identified by a (local) timestamp and
the initiator’s ID, nodes receiving more than one Lock messages
within a small time frame may assume as valid the one with the
earliest timestamp (or the one coming from the lowest ID) and
accept Reindexmessages only by its initiator. If the newly received
Lock is not valid, the node stops forwarding it. An already LOCKED
node is not allowed to initiate another locking.

We should note here that since each node collects global
statistics before a newpivot decision, it is impossible that two non-
malicious nodes come to a different decision. This would only be
possible (with low probability) if sampling were used for global
statistics collection. Even so, the locking mechanism makes sure
that only one node at a time can instruct reindexing.

3.6. Updates

Tuple updates are normally performed through an update of the
tuple’s measures at the corresponding node. One open issue re-
lates to the insertion of new tuples in the system. While hashing
according to the current pivot and storing the new item is trivial,
theremay exist indices that need to be updated since the new tuple
must be included in the result set of various queries. As an example,
consider an inserted tuple that documents sales of electronics in a
new Greek city. An existing index for q = ⟨‘Greece’, ‘Electronics’⟩
should now include the ID of the node responsible for the new
tuple. It should be noted that inconsistencies may arise only by
tuples that contain new pivot level combinations and thus create
new forests. Since the creation of an index may be followed by one
or more index deletions at the creating node (due to space con-
straints), the inserting node cannot know of the existence or not
of an index relative to the new tuple a priori. This can be resolved
in a variety of ways, according to the level of consistency that we
require from our system. We identify the following two cases:
• Strong consistency: For applications that rely on constant data

analysis and immediate detection of changes in trends, it is cru-
cial that, at any time, any query to the data warehouse returns
the complete and most up-to-date answers. For instance, in
case of an intrusion detection application which analyzes data
created by geographically disperse routers, denial-of-service
(DoS) attacks must be tracked immediately in order to protect
the routers from collapsing. To achieve strong consistency, after
each tuple insertion, the node performs

∏d
i=0 Li − 1 lookups to

identify the existence of all possible index combinations. Each
node that holds a corresponding combination will update its
value. Thus, consistency is guaranteed in exchange of a higher
communication cost, which depends on the rate λupd at which
updates are being performed.
• Weak consistency: When the application can afford some

‘‘staleness’’ in the data, a weak consistency scheme can
be applied. Nodes append the inserted tuples to a globally
known location. Index-holding peers can then, asynchronously,
retrieve this directory and update the required indices. During
the time period between the new tuple insertion and the
asynchronous index update, it is possible that some answers are
not 100% up-to-date. The freshness of the responses depends on
λupd, aswell as on the rateλindex atwhich each node contacts the
central directory and updates its indices. The communication
cost is smaller than that of the strong consistency scheme, since
λindex < λupd. Therefore, this approach is recommended in cases
where bandwidth resources are limited and 100% accuracy is
not required.

4. Discussion—enhancements

In this sectionwe discuss some important aspects ofHiPPIS that
relate to its parameters as well as optimization issues.

4.1. Memory requirements

A node running HiPPIS requires space for the combination
statistics (O(

∏d
i=0 Li) modulo the window W) plus the storage

required for the soft state indices. Each created index for a specific
key holds, besides the key itself and its time of creation, the IDs
of the nodes that hold the relative tuples. The number of different
IDs is bound by the size of the network N . Hence, if Kmax is the
maximum number of non-pivot keys held by a node, each node
requires O(NKmax) bytes. Note here that in this calculationwe have
not included the amount of space reserved for the data at eachnode
(usually not stored in main memory). Nodes can either physically
store the data or pointers to their original locations.Whichever the
case, the amount of space per forest depends on P (besides the data
distribution of course): The higher the hierarchy levels in P , the
larger the number of tuples that correspond to each tree.

4.2. Parameter selection

A careful choice of the TTL, W , Kmax parameters plays an
important role in the performance of the system. A small TTL
degrades the success ratio of the search mechanism, invalidating

430 K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 424–437
indices unnecessarily. Assuming the rate at which participating
peers delete their data or disconnect is small (a reasonable
assumption for our motivating application), a large value for TTL
will not create a stale image that fails to reflect the infrequent
changes.

The window parameter W represents the number of previous
statistics that each node stores and uses in order to decide a pivot
change. A large value for W will fail to perceive load variations,
whereas a very small valuewill possibly lead to frequent erroneous
or conflicting reindexing decisions. In order to estimate its value,
we set W = O(1/λ), i.e., we connect the size of the window with
the query inter-arrival time. The more frequent the requests, the
smaller W can be and vice versa.

In order to estimate λ, we need the zeroth and first frequency
moment (F0 and F1 respectively) of the request sequence arriving at
a node. F0 is the number of distinct IDs that appear in the sequence,
while F1 is the length of the sequence (number of requests). Nodes
can easily monitor the number of incoming requests inside a time
interval. Many efficient schemes to estimate F0 within a factor of
1 ± ϵ have been proposed (e.g., [6,5]). We use one of the schemes
in [6], which requires only O(1/ϵ2

+ log(m)) memory bits, where
m is the number of distinct node IDs. In reality, m is in the order
of the network’s size, since all nodes may possibly reach it in the
DHT.

Finally, regarding the total amount of memory dedicated per
node, this is dominated by themaximumnumber of non-pivot keys
Kmax that a node is responsible for. Assuming a value of N = 1K
nodes for our application and that IDs and keys need 20 bytes
(as outputs of SHA1 hash function), a node that is responsible for
1K different keys will need at most 20 MB of memory while for
10K keys a node will need at most 200 MB of memory (certainly
affordable by most modern desktop PCs).

4.3. Reindexing cost and load balancing

Reindexing is a costly procedure, as it requires network flooding
for the collection of statistics and the consecutive re-insertion of
tuples. Instead of crawling the entire network, the global statistics
collection could be based on uniform sampling, thus decreasing the
number of required messages. Random sampling in DHTs can be
achieved simply by generating identifiers at random and finding
the peers closest to them. Because peer identifiers are generated
uniformly,weknow they are uncorrelatedwith anyother property.
This technique is simple and effective, as long as there is little
variation in the amount of the identifier space that each peer is
responsible for. Such a sampling technique was used in various
studies of widely deployed DHTs (e.g., [28]). However, the re-
insertion of tuples is the part that dominates the complexity of
the reindexing process, requiring Ω(N2) messages. Therefore, it is
important to ensure that our gains from reducing query flooding
outweigh this cost.

More formally, let us assume that x and y are the pivot
level combinations before and after reindexing respectively. As
Gainx→y(t) we denote the gain in messages after reindexing as a
function of time and as Costx→y the cost of reindexing inmessages.
To conclude that a reindexingwas indeed beneficial for the system,
the following statement should be true:

Costx→y < Gainx→y(t)⇒
Costx→y < EMx · log(N)+ Flx · N − EMy · log(N)− Fly · N ⇒
Costx→y < λx · t · log(N)+ (λ− λx) · t · N
−λy · t · log(N)− (λ− λy) · t · N ⇒

Costx→y < (N − log(N))(λy − λx) · t

where EMi and Fli represent the exact match and flooded queries
respectively for level combination i. Moreover, we assume no soft-
state indices, a steady query arrival rate λ and steady query rates
λx and λy targeted towards x and y respectively. Costx→y is bound
by N2, since the size of the dataset |D| ≫ N2 and thus messages
are grouped by recipient. So, in the worst case:

N2
· log(N) < (N − log(N))(λy − λx) · t ⇒

(λy − λx) · t >
N2
· log(N)

N − log(N)

and for large N values, N − log(N) ∼= N

(λy − λx) · t > N · log(N). (1)

From (1) we derive that a reindexing is beneficial in terms of
messages when the difference in the number of exact matches
before and after reindexing is greater than a number depending
on the network size. This can be achieved either when there
is a reasonable difference between the query arrival rates of
the two level combinations or when adequate time has elapsed
before a new reindexing takes place. We must stress that this
formula represents the worst case scenario for HiPPIS, since we
have assumed that soft-state indices do not contribute to the
system’s gain. However we expect that, depending on the posed
workload, soft-state indices can significantly decrease the number
of messages exchanged and thus lead to a balance between
reindexing Cost and Gain more quickly.

Furthermore, following our previous discussion, there is a clear
trade-off between the amount of space per forest (via the choice
of the pivot level) and the amount of processing corresponding
to each node: The higher the pivot level, the more requests are
handled through a single node. In this work, we do not explicitly
deal with the load-balancing problem (caused either by uneven
load or data distribution), as this is orthogonal and can be handled
in a variety of well-documented ways in a DHT (e.g., [25,11], etc.).
Nevertheless and for our target applications, we believe and prove
in our experimental section that an uneven data distribution is
unlikely: The number of participating peers is not expected to be
very high so that a uniform hashing of the existing combinations
even at the highest levels will result in a uniform data distribution.

4.4. Minimize global statistics collection

In order to minimize the number of occasions where global
statistics are collected due to nodes interested in suboptimal levels
or malicious users, we define the intervaln,t parameter for each
node n at the tth time it checks its statistics. This parameter defines
the minimum time-stretch between two consequent checks that
can be initiated by n and coincides with the frequency of n
checking its statistics. Its initial value Ts is the same for all nodes:
intervaln,0 = Ts. In order to discourage consecutive reindexing
attempts from the same node, this parameter is multiplicatively
increased when the processing of global statistics concludes in
different results or in a no-change decision and reset to Ts
otherwise. Specifically:

intervaln,t =

2× intervaln,t−1, if conflict between
local and global stats

Ts, otherwise

4.5. Threshold selection

The threshold is of vital importance for the efficiency of
the system, and should therefore be carefully determined in
order to avoid unnecessary reindexing decisions. Frequent index
reorganizations should be discouraged, yet beneficial reindexing
should not be prevented. Thenodehaving initiated the collection of
global statistics calculates the popularity of each level combination,
that is, the percentage of queries concerning that specific level
combination, and ranks them according to this metric (C : c0 <
c1 < · · · < cmax). The overall query distribution should be taken

K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 424–437 431
into account as well, since it is possible that the system profits by
choosing some less popular combination than cmax. This conclusion
derives from the following observations:
• Remaining at the current P spares the reindexing process as

well as the invalidation of the so far created indices.
• A ∗ subsumes all levels of a dimension’s hierarchy, since queries

for other levels can be answered from the ALL data stored: For
example for a pivot level P = ⟨H11, ∗⟩ all queries q = ⟨D11, q2⟩
can be answered (with q2 being any possible value from any
level of dimension 2).

The pivot choice is shaped as follows: The level combinations that
lie within threshold from cmax are considered as pivot candidates.
More formally,

{∀ci ∈ C, 0 ≤ i ≤ max | popularitycmax

− popularityci < threshold⇒ ci ∈ Ccand}

where Ccand is the set of candidate level combinations. The
threshold value is proportional to the Mean Difference (∆) of
the popularity values, in particular threshold = k · ∆, k ≥ 1.
The parameter ∆, which equals the average absolute difference
of two independent values, is chosen as a measure of statistical
dispersion:

∆ =
1

max ·(max+1)

max−
i=0

max−
j=0

|ci − cj|.

Among all ci ∈ Ccand, the new pivot level is chosen through the
following strategy:
1. If the current level P ∈ Ccand, the system takes no action.
2. Otherwise, from all c ∈ Ccand containing ∗ in one or more

dimensions, we consider only combinations that include up
to

D
2

ones and exclude the rest. This is in order to ensure

that no excessive local processing will be needed for incoming
queries. For each of the remaining combinations containing ∗,
we recalculate their popularity adding the popularity of other
candidate combinations that are subsumed by it. For instance,
let us assume ⟨Country, Brand⟩, ⟨City, ∗⟩ and ⟨∗, Brand⟩ are
the candidate pivot levels, with popularities of 10%, 20% and 15%
respectively. Comparing the two levels with ∗, ⟨∗, Brand⟩ can
answer ⟨Country, Brand⟩ queries, thus its popularity rises to
25%, and is therefore chosen over ⟨City, ∗⟩ as the new pivot
combination.

3. If none of the above holds, the system shifts to the level
combination with the highest popularity.

5. Experimental results

We now present a comprehensive simulation-based evaluation
of HiPPIS. Our performance results are based on a heavily modified
version of the FreePastry simulator [30], although any DHT
implementation could be used as a substrate. By default, we
assume a network size of 256 nodes, but results were collected
with up to 8K nodes. In our simulations, we use synthetically
generated data, produced by our own as well as the APB-1
benchmark generator [22]. In the former case, each dimension
is represented as a tree with each value having a single parent
and mul children in the next level. The tuples of the fact table
to be stored are created from combinations of the leaf values of
each dimension tree plus a randomly generated numerical fact
(sales). By default, our data comprise of 22k tuples, organized in
a 3-dimensional, 3-level hierarchy. The number of distinct values
of the top level is |H1| = 20 and mul = 2. The initial pivot
is, by default, ⟨H12,H22,H32⟩. The APB-1 generated datasets are
described in the corresponding subsection.

For our queryworkloads,we consider a two-stage approach:we
first identify the probability of querying each level combination ac-
cording to the levelDist distribution; a query is then chosen from
Table 2
Percentage of queries directed towards the 27 level combinations of our initial
simulation.

θ % Most popular % Least popular #Combs

0 3.7 3.7 27
0.5 11.1 2.1 27
1.5 44.8 0.3 27
2.5 74.9 0.01 27
3.5 88.8 0.01 12

that combination following the valueDist distribution. In our ex-
periments, we order the different combinations lexicographically,
i.e., combination ⟨H13,H21,H31⟩ > ⟨H11,H23,H33⟩ and we use the
Zipfian distribution for levelDist where #queries for combination
i ∼ 1/iθ . We vary the value of θ as well as the direction of the or-
dering to control the amount and target of skew of our workloads.
For valueDist we use the 80/20 rule by default, unless stated other-
wise. Table 2 gives an overview of theworkloadswe frequently use
in this section.Wedocument the percentage of queries directed to-
wards themost and least popular combination, aswell as the num-
ber of combinations that receive at least one query (out of the total
27 existing).

Our default workload comprises of 35k queries which arrive at
an average rate λquery of 10 queries per simulated time unit. For
simplicity reasons we have set the time unit equal to 1 s, therefore
λquery = 10 queries

s . For our experiments, W is set to 50 s and TTL
is given a practically infinite value (indices never expire). Finally,
the value of Imax, which is heavily data and query-dependent, has
been experimented on and set to 2k (each node dedicates at most
100 KB of memory on soft-state indices).

In this section, we intend to demonstrate the performance and
adaptability of HiPPIS under various conditions. To that direction,
we measure the percentage of queries which are answered
directly, i.e., without flooding (precision) and we trace the average
number of exchanged messages per query, as well as the overhead
of control messages needed by our protocol. We compare HiPPIS
with the naive protocol (referred to as Naive), where precision
equals the ratio of queries on the initial pivot, and a special case of
HiPPIS, where only the indices are utilized andno reindexing occurs
(referred to as HiPPIS(N/R) or plain N/R).

5.1. Performance with varying query distributions

In this initial set of simulations, we vary the θ parameter
for levelDist as well as the direction of skew, using the default
parameters otherwise.

In the first graph of Fig. 5, data are skewed towards the ‘‘lowest’’
level (⟨H13,H23,H33⟩). As θ increases, the workload becomes more
skewed and the performance of HiPPIS improves: reindexing
is performed sooner, as the ratio of popular queries increases,
resulting in a rise of exact matches due to the chosen combination.
Moreover indices contribute more to the system’s precision, since
the number of distinct queries for non pivot tuples decreases. For
uniform distributions, the number of distinct queries does not
allow our method to capitalize on the indexing scheme.

The next graph shows results where our workload favors
⟨H11,H21,H31⟩. Again, we notice a similar trend in performance
as the values for θ increase. Nevertheless, HiPPIS is slightly more
effective than before, with its difference from N/R increasing
as θ increases. This is due to the limited number of distinct
values of ⟨H11,H21,H31⟩, which facilitates the maintenance of
indices, favoring N/R against HiPPIS. The latter erases all created
indices during the reindexing process. However, HiPPIS naturally
outperforms its competition in the steady state, as it can increase
its performance with time.

Fig. 6 depicts the number of messages exchanged per query
in the system, indicating a measure of bandwidth consumption.

432 K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 424–437
Fig. 5. Precision for varying levels of skew (most popular combination is ⟨H13,H23,H33⟩ and ⟨H11,H21,H31⟩ respectively).
Fig. 6. Average number of messages required to answer a query for varying levels of skew (most popular combination is ⟨H13,H23,H33⟩ and ⟨H11,H21,H31⟩ respectively).
Table 3
Statistics for various datasets.

Direction of skew θ #Global stats #Reindexings #Reinsertions Simulation time (s) BW (KB)

Up 1.5 5 1 11746 5.1 755
Up 2.5 4 1 11678 5.5 746
Up 3.5 2 1 11521 5.5 730
Down 1.5 5 1 16824 4.2 743
Down 2.5 4 1 16933 4.4 735
Down 3.5 3 1 16701 4.3 740
Messages regarding query resolution (including requests as well
as responses) and controlmessages, which include those needed to
build indices, collect statistics, notify of a reindexing and reinsert
tuples, are presented separately. Qualitatively, the total number
of messages per query is inversely proportional to the system’s
precision. As observed in all experiments, the overhead of control
messages is small and outweighed by the gains in precision (less
than 8% over the total number of messages). This is due to the fact
that HiPPIS carries out the minimum required reindexing rounds,
which translates to one reindexing process per direction of skew.
We also notice that the overhead of the controlmessages decreases
as the workload becomes more skewed (almost negligible for θ >
1.5). This can be explained by the fact that HiPPIS becomes more
confident in the level of reindexing it chooses as θ increases.

5.2. Reindexing cost

Table 3 presents statistics concerning the reindexing process
during the workloads of the previous experiment. The workloads
directed towards ⟨H13,H23,H33⟩ are denoted as down and the
ones towards ⟨H11,H21,H31⟩ as up. As aforementioned, the cost of
reindexing is non-negligible. Hence, it is very important that the
system performs theminimum required reindexing rounds.HiPPIS
proves extremely efficient to that end:Only one reindexing process
is carried out per direction of skew and less than 5 SendStats
requests are produced per simulation, thanks to the interval
selection strategy presented in Section 4.4. Thus, our method
makes near-optimal use of its bandwidth-intensive operations. It
is also worth noting that reindexings towards the lowest hierarchy
levels cause more reinsertions than those directed towards the
upper ones. This is due to the fact that the dataset used has a
limited number of tuples. For a large number of tuples, reinsertions
for all directions converge to N2. However, the total consumed
bandwidth (denoted as BW) remains the same regardless the skew
and its direction, since, in all cases, the initial dataset is reinserted.
The time measurements may not adequately reflect reality due to
the fact that the experimental evaluation is based on a simulation
rather than a real, deployed system. In a real system of N nodes,
wewould expect a significant acceleration in computation (almost
N-fold) and a communication cost depending on the topology of
the underlying network.

Trying to identify the circumstances under which our system
benefits from the reindexing process, we plot the Cumulative Gain
and the Cumulative Cost of reindexing in messages for various
datasets and workloads (Fig. 7). By Cumulative Gain we signify the
total number ofmessages sparedwhen usingHiPPIS instead ofN/R
and in Cumulative Cost we include messages for global statistics
collection, locking and reinsertion of tuples. Our first observation is
that the Cumulative Gain increases more rapidly with the increase
in skew. This is natural, since highly skewed workloads translate
to bigger differences between the most popular and the rest
level combinations. Moreover, the workloads directed towards
⟨H13,H23,H33⟩ exhibit a higher increase rate in Cumulative Gain
compared to the ones towards ⟨H11,H21,H31⟩. This is due to
the fact that the soft-state indexing mechanism of N/R is more
effective in the latter case (less distinct values for the specific level
combination). However, for highly biased workloads, regardless

K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 424–437 433
Fig. 7. Balance between reindexing cost and gain in messages over time (skew towards ⟨H13,H23,H33⟩ and ⟨H11,H21,H31⟩ respectively).
Fig. 8. Storage distribution over the network nodes.

Fig. 9. Index distribution over the network nodes.

the direction of skew, our system manages to outweigh the
reindexing cost in less than 100 s.

The results of this experiment conform to the conclusions
derived by our cost benefit analysis of Section 4.3: The higher the
workload skew, themore quicklyHiPPIS starts gaining benefit from
a reindexing.

5.3. Storage and load distribution

This set of experiments aims to evaluate HiPPIS in terms of
storage and load distribution among the participating network
nodes. Using the default dataset, we utilize three of the workloads
generated for the previous experiments: the one with levelDist of
θ = 0 (denoted as uni), and the ones with θ = 3.5, directed
towards ⟨H11,H21,H31⟩ and ⟨H13,H23,H33⟩ (denoted as up and
down respectively).

Fig. 8 depicts the space dedicated by each node for storing the
actual data (in the form of the forest-like structures presented
in Section 3.2) after the end of the simulation. The measured
quantities for each of the 256 nodes are sorted in ascending
order. After the necessary reindexings have occurred, the final
pivot level combinations are ⟨H12,H22,H32⟩, ⟨H11,H21,H31⟩ and
⟨H13,H23,H33⟩ for uni, up and down respectively. The more
numerous the different values of P , the more balanced is the
storage distribution among the nodes. In the case of the down
workload, the majority of nodes host similar quantities of storage
space. However, even for the up workload, no major differences
are documented, since the number of different value combinations
is still much larger than the size of the network. This leaves the
fairness of the distribution mainly on the hash function.

P affects the total disk space needed to store the distributed
data structure: The same dataset requires more space when stored
under ⟨H13,H23,H33⟩ than under ⟨H11,H21,H31⟩. This is due to the
fact that a P close to the root of the forest eliminates redundancies
in all levels lying below it in the hierarchy. This can be clarified
by observing Figs. 2(c) and 4. While the value ‘Athens’ is stored
just once for ⟨city, category⟩, it needs to be stored 3 times for
⟨city, brand⟩.

Fig. 9 shows the amount of indices stored by each network
node in ascending order at two distinct points in time, at T1 =
100 s and T2 = 3000 s. T1 corresponds to an initial point
before any reindexing has occurred, whereas T2 to a moment
close to the end of the simulation. In all cases (except uni),
indices are distributed pretty evenly among the nodes, with more
skewed loads registering the most balanced results. Uni exhibits a
remarkable increase in indices over time (almost 18 times asmany
indices in T2 than in T1). Since the queries can contain any value
with equal probability and no reindexing is performed, very few
queries are being repeated and thus indices are constantly being
built. The smallest increase is documented for the up workload,
since it is the workload with the least possible value combinations
that canbequeried. Fig. 11 depicts the averagenumber ofmessages
per second handled by each network node over time, including
control messages. For a uniform workload, the simulation starts
with an average load almost as high as the query arrival rate, since
the majority of the queries are answered though flooding. As time
progresses and indices are being created, this measure decreases
almost linearly. For the skewed workloads, we observe a spike in
load shortly after the simulation starts (see embedded graph). This
is due to the reindexing process and mainly to the reinsertion of
the dataset according to the new P . However, the average load per
node remainswithin acceptable limits (less than 30msg/s) and can
easily be handled by the network nodes. Moreover, the decrease
is more abrupt during the first 100 s, while after that point, no
significant improvement is documented. This can be explained by
the fact that reindexing occurs very quickly, thus leaving little
room for refinement through index creation. Finally, as seen in
Fig. 10, the individual load (sorted in ascending order) is very
evenly distributed among the network nodes at all times.

5.4. Scaling the network and dataset size

In this set of experiments we aim to examine how well our
system scales with regard to the number of participating nodes
and the number of tuples in the dataset. First, having inserted the
default dataset, we vary the network size from 128 to 8192 nodes.

434 K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 424–437
Table 4
Statistics for various network sizes.

#Nodes #Global stats #Reindexings Avg. load/node (msg/s) ReIndLoad/node (msg/s) #Msg/query Precision (%)

128 5 1 2.2 95 28 84.7
256 4 1 2.0 54 51 84.4

1024 2 1 1.8 19 182 83.5
2048 2 1 1.7 12 348 83.3
4096 2 1 1.6 9 655 83.3
8192 2 1 1.6 6 1202 83.3
Table 5
Statistics for various dataset sizes.

#Tuples #Global stats #Reindexings Avg. load/node (msg/s) ReIndLoad/node (msg/s) BW (MB) #Msg/query Precision (%)

100K 3 1 2 204 4 52 83
1M 4 1 2 235 40 49 83
10M 3 1 2 254 400 50 83
100M 3 1 2 255 4000 49 83
Fig. 10. Load distribution over the network nodes.

Fig. 11. Average load per network node over time.

We believe that for a data warehousing application, a system
consisting of 8K nodes is an already exaggerated scenario. Also, we
vary the dataset size from 100K to 100M tuples and insert it in our
default system of 256 nodes. In all cases we pose workloads with
levelDist of θ = 3, directed towards ⟨H13,H23,H33⟩.

As Table 4 proves, HiPPIS manages to maintain a steadily high
precision, performing only one reindexing and collecting global
statistics less than 5 times throughout the simulation, regardless
of the network size. Of course, the average number of messages
required to resolve a query increases with the increase in network
nodes, as flooding becomes more costly. However, this number
is scattered over the network nodes, resulting in a decreasing
average load per node. The same is true for the load caused by the
reindexing process, since the number of reinsertions remains the
same in all cases due to the dataset size (|D| < N2).

When the number of tuples increases by orders of magnitude,
only the bandwidth consumed during the reindexing process
Fig. 12. Precision over variable percentage of duplicate queries.

shows a proportional increase, due to the reinsertion of the
dataset. The rest of the statistics presented in Table 5 remain
stable: Invariably high precision, steady average load per node
and number of messages per query, and reindexing load per node
converging to N .

5.5. The effect of recurring queries

We plan to identify the effectiveness of our system’s indexing
mechanism under workloads with varying ratio of recurring
queries. We believe that this will be the case for the majority
of workloads for our target applications, with users temporarily
interested in a small number (or set) of (aggregate) data. We
consider two different scenarios for the distribution of the
duplicate queries. In the first case, for two levels of skew (θ =
{1.0, 3.0}), we vary the percentage of unique queries by increasing
duplicate ones, following the same distribution. In the second case,
for three different values of θ for levelDist, namely 0.0, 1.0 and 3.0,
the valueDist distribution varies from uniform to 99/1, creating
within each level combination the same amount of skew. The
documented precision for both cases is depicted in Figs. 12 and 13
respectively.

In both cases we notice that, as more queries recur in the
workload, the performance increases. In the first case, recurring
queries follow the levelDist distribution, meaning that duplicate
queries primarily concern the most popular level combinations.
Since HiPPIS reindexes to the most beneficial level, it naturally
increases its exact answers compared to N/R. Nevertheless, the
gains decrease as replication increases, unlike N/R, which shows
almost linear improvement. This is due to the fact that there
exists less ‘‘room’’ for HiPPIS to take advantage of the indexed
queries since it has already moved to the best P which takes up
significantly more requests. As θ increases, we normally expect an
increase in performance.

K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 424–437 435
Fig. 13. Precision for varying distributions of valueDist.

Fig. 14. Precision over variable number and skew of aggregate queries.

In the second case (Fig. 13), as the bias of queried values
within a level combination increases, we observe that our system
benefits more and more from the soft-state indices, exploited by
duplicate queries. Small repetition in queries results in significant
differences in precision for the various θ values, as for these
kinds of workloads precision is dominated by exact matches.
Nevertheless, all three distributions seem to converge to very high
precision levels as the ratio of duplicate queries augments.

5.6. The effect of aggregate queries

In this experiment we intend to examine how our system
behaveswhenwe inject an increasing number of aggregate queries
(from zero up to 50% of the total number of queries). We assume
two different distributions as to how ∗ are distributed in those
queries: In scenario 1 (S1), a∗ appears in the three dimensionswith
probabilities (0.73, 0.18, 0.09) respectively (i.e., we heavily favor an
aggregate viewon the first dimension). In the second one (S2), each
dimension is given an equal probability. The workload skew is set
to θ = 2.0. Results are presented in Fig. 14.

We notice that both methods increase in performance as the
percentage of aggregate queries increases in both distributions.
This is due to the fact that the different combinations that these
queries can produce are less than those of point queries. Therefore,
increasing their ratio enables the indexing mechanism to store
and answer a larger amount or requests without flooding. This
is evident from N/R’s precision increase. In the latter case, the
reindexing process invalidates all created indices, thus mitigating
the beneficial effect we described before. Furthermore, the skew
in the star distribution affects, although slightly, the system’s
precision: greater skew leads to greater probability of duplicate
queries, favoring the indexing mechanism. Since HiPPIS is less
dependent on this mechanism, the increase in precision is less
noticeable than in the case of HiPPIS(N/R).
Fig. 15. Precision over variable dimensionality datasets.

5.7. Performance in dynamic environments

In the next experiment, we measure the performance and
adaptivity of HiPPIS in dynamic environments, namely sudden
changes in the workload. We tailor our query distribution so that
a sudden change occurs in the middle of the simulation (tc =
3100 s): From a skewed workload towards ⟨H13,H23,H33⟩we shift
to a skewed load towards ⟨H11,H21,H31⟩. We show the results for
two levels of skew in Fig. 16.

Our results show that, in all cases, HiPPIS quickly increases its
precision due to the combination of automatic reindexing and soft-
state indices. Flooding increases after tc , since neither the pivot
combination nor the so far created indices can efficiently serve
queries with different direction of skew (hence the decline in
precision). However, it quickly manages to recover and regain its
performance characteristics, as a reindexing is performed and new
indices are built. The rate at which these events occur depends on
the amount of skew: In the θ = 3.0 case, we show a remarkable
increase in precision (starting from the plain data-insertion at t =
0 s), fast recovery after the change in skew and convergence to
almost 100% precision. For the less skewed distribution (θ = 1.0),
the results record a slight deterioration in the rate of convergence
as well as a decline in precision from the change in skew. The
decline ranges from less than 30% in the θ = 3.0 case to about
40% in theworst-case. Once again,we observe thatHiPPIS performs
best in skewed workloads, but its performance in the steady state
is invariably high, regardless the workload.

5.8. Varying the number of dimensions

In this set of simulations we plan to investigate the possible
performance variations caused by datasets with variable dimen-
sionality. We assume that each dimension is described by a 3-level
hierarchy. By varying the mul parameter we try to create equal-
size data and query-sets with the same θ value. Fig. 15 depicts
the results for 2–8 dimensions for two different values of θ : 1.0
and 3.0.

As the number of dimensions increases linearly, the number
of combinations increases exponentially. This radically reduces
the popular levels’ request rates, especially for less skewed
workloads, thus reducing the number of exact match queries for
the level combination HiPPIS chooses. This becomes obvious when
θ increases: the slope becomesmore parallel with the dimension’s
axis. HiPPIS ranges between 40% and 70% in the low skew case
while for bigger skew this becomes 80%–93%. A pure indexing
scheme solely relies on the duplicate queries and (to a lesser
extent) to the exact match queries of the random pivot level, thus
producing poor results.

5.9. Updates

In this subsection we focus on the evaluation of the weak
consistency update mechanism of HiPPIS. Specifically, we run the

436 K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 424–437
Fig. 16. Precision over time for various workloads when a sudden shift in skew
occurs in tc = 31 000 s.

Table 6
Percentage of inconsistent answers for various λu .

λupd (updates/s) Inconsistency (%)
U1 U2

0.01 0.10 1.18
0.1 1.26 5.02
1.0 8.15 18.23

10.0 19.21 20.01

simulator using the default dataset and two workloads, U1 and U2
with skew set to θ = 2.0. U1 contains exclusively point queries,
whereas in U2, 30% of the workload’s queries are aggregate ones.
During he simulation, we apply incremental updates at a rate λupd

that varies from 0.01 to 10 updates
s . The period of the index update

procedure is set to 100 s for all network nodes in all cases. Bearing
in mind that the incoming query rate λquery = 10 queries

s , this
translates to queries being posed 1000 timesmore frequently than
index updates are checked. Incremental updates also occur up
to 1000 times more often than index checking. We measure the
percentage of queries whose answers are incomplete, henceforth
termed as inconsistency and present the results in Table 6. Note that
a response is considered inconsistent, when at least one record is
missing, regardless the total number of missing records.

Naturally, the faster the update rate, the higher the number of
inconsistent answers. However, inconsistency tends to converge
as λupd increases. Even when λupd is equal to the incoming query
rate, meaning that every update is followed by a query, the
inconsistency remains in tolerable levels, due to the fact that
after the necessary reindexings have occurred, most of the queries
are answered directly, without the use of indices. The impact of
reindexing is evidently heavier for U1. Since it does not contain
any aggregate queries, the workload is more targeted to the new
pivot level values, thus requiring less use of indices. As a result, the
inconsistency ratio is noticeably lower than that of U2.

Finally, it is worth noticing that when following the weak
consistency scheme, the cost of updates is independent of λupd and
equals N messages every period of the index update procedure
(2.56 msg

s in this case). On the contrary, a strong consistency
scheme would provide 100% accuracy, but require (

∏d
i=0 Li − 1) ·

log(N) messages per update, resulting in an average rate ranging
from 2.16 to 2160 msg

s for our simulation settings, depending
on λupd. Therefore, for high λupd the strong consistency scheme
should be avoided due to the considerable communication cost it
produces.

5.10. APB benchmark datasets

Finally, we test the performance of HiPPIS using some more re-
alistic data and query sets generated by the APB-1 benchmark [22].
Fig. 17. Precision of HiPPIS for the APB query workload.

APB-1 creates a database structure with multiple dimensions and
generates a set of business operations reflecting the basic func-
tionality of OLAP applications. Running the APB-1 data generator
with the density parameter set to 0.1 and 1, we produced two
4-dimensional datasets (APB-A andAPB-B)with cardinalities 9000,
900, 9 and 24 and twomeasure attributes. Each dimension is com-
prised of a hierarchy of 7, 4, 2 and 3 levels respectively. APB-A con-
tains 1.2M and APB-B 12M tuples respectively, while the produced
workload comprises of 25K queries (queries with ∗ were filtered
out from the original query workload) with 1% replication ratio.
Results are depicted in Fig. 17.

We clearly notice that HiPPIS exhibits very high performance,
reaching over 90% of precision in its steady state after about 400 s
for APB-A. This experiment shows that for more realistic scenarios,
even with more dimensions HiPPIS quickly adapts and serves the
vastmajority of user requests without flooding. Using plain indices
reduces precision by over 20%, while there is a substantial delay in
reaching the steady state (twice as many queries needed).

6. Conclusions

In this paper we described HiPPIS, a distributed system that
stores and indexes data organized in hierarchical dimensions
for DHT overlays. HiPPIS, assuming no prior knowledge of the
workload nor any precomputations, enables on-line queries on
the different dimensions and granularities of the data. Our system
dynamically adjusts to the workload by reindexing the stored
data according to the incoming queries. With the combination of
adaptive indexing and soft-state pointers,HiPPIS manages to avoid
the network-disastrous flooding in most cases, while enabling
both real-time querying and update capabilities on voluminous
data. Depending on the needs of the application, HiPPIS can also
deploy variable consistency update schemes to achieve the desired
accuracy in replies without excessive communication overhead.

Our simulations, using a variety of workloads and data
distributions, show good performance and bandwidth efficiency.
HiPPIS is especially effective with skewed workloads, achieving
very high precision and fast adaptation to dynamic changes in
the direction of skew. Even with few recurring queries, HiPPIS
manages to answer the majority of queries within O(logN) steps,
by detecting the most popular level combination and shifting to
it. Moreover, a significant increase in the number of aggregate
queries does not degrade systemperformance, but on the contrary,
leads to higher precision. At the same time, the systemmanages to
avoid a substantial load imbalance or uneven storage distribution.
Finally, adopting a weak consistency update scheme does not
significantly degrade the freshness of the responses (less than 20%
of the answers are incomplete), even when updates occur as often
as queries are posed.

K. Doka et al. / J. Parallel Distrib. Comput. 71 (2011) 424–437 437
Business analytics are believed to represent particularly good
opportunities for Cloud Computing applications with many
companies moving towards this direction. We believe that our
system is a particularly good candidate for deployment in theCloud
and this is what we currently pursue. Indeed, HiPPIS provides
several architectural characteristics required for the Cloud, such as
cost-efficiency, meaning high-performance query processing and
updates, elasticity, meaning seemingly infinite resources through
the use of a shared-nothing architecture and content availability,
meaning that the application should be able to continue running
in the event of multiple node failures.

References

[1] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, T. Van Pelt, Gridvine: Building
Internet-Scale Semantic Overlay Networks, in: Lecture Notes in Computer
Science, 2004, pp. 107–121.

[2] S. Abiteboul, T. Allard, P. Chatalic, G. Gardarin, A. Ghitescu, F. Goasdoué,
I. Manolescu, B. Nguyen, M. Ouazara, A. Somani, N. Travers, G. Vasile, S.
Zoupanos, WebContent: efficient P2P warehousing of web data, Proceedings
of the VLDB Endowment Archive 1 (2) (2008) 1428–1431.

[3] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, A. Rasin,
HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for
analytical workloads, in: Proceedings of the 35th International Conference on
Very Large Data Bases–Volume 35, 2009, pp. 1084–1095.

[4] M. Akinde, M. Böhlen, T. Johnson, L. Lakshmanan, D. Srivastava, Efficient OLAP
query processing in distributed data warehouses, Information Systems 28
(1–2) (2003) 111–135.
doi:http://dx.doi.org/10.1016/S0306–4379(02)00051–0.

[5] N. Alon, Y. Matias, M. Szegedy, The space complexity of approximating the
frequency moments, Journal of Computer and System Sciences 58 (1) (1999)
137–147.

[6] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, L. Trevisan, Counting Distinct
Elements in a Data Stream, in: Lecture Notes in Computer Science, vol. 2483,
2002, pp. 1–10.

[7] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
J. Zhou, SCOPE: easy and efficient parallel processing of massive data
sets, Proceedings of the VLDB Endowment 1 (2) (2008) 1265–1276.
doi:http://doi.acm.org/10.1145/1454159.1454166.

[8] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, S. Moon, I tube, you tube,
everybody tubes: analyzing the world’s largest user generated content video
system, in: Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement, ACM, 2007, p. 14.

[9] Q. Chen, U. Dayal, M. Hsu, A distributed OLAP infrastructure for e-commerce,
in: Proceedings of the 4th IFCIS International Conference on Cooperative
Information Systems, IEEE Computer Society, 1999, pp. 209–220.

[10] M. Ester, J. Kohlhammer, H. Kriegel, The DC-tree: a fully dynamic index
structure for datawarehouses, in: Proceedings of the International Conference
on Data Engineering, IEEE Computer Society Press, 2000, pp. 379–388.

[11] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, P. Keleher, Adaptive replication
in peer-to-peer systems, in: International Conference on Distributed Comput-
ing Systems, vol. 24, 2004, pp. 360–371.

[12] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, H. Pirahesh, Data cube: a relational aggregation operator generaliz-
ing group-by, cross-tab, and sub-totals, DataMining andKnowledgeDiscovery
1 (1) (1997) 29–53.

[13] Hadoop Web page. http://hadoop.apache.org/core/.
[14] R. Huebsch, J. Hellerstein, N. Lanham, B. Loo, S. Shenker, I. Stoica, Querying the

Internet with PIER, in: Proceedings of the 29th International Conference on
Very Large Data Bases–Volume 29, VLDB Endowment, 2003, p. 332.

[15] P. Kalnis, W. Ng, B. Ooi, D. Papadias, K. Tan, An adaptive peer-to-peer network
for distributed caching of OLAP results, in: Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, ACM, New York,
NY, USA, 2002, pp. 25–36.

[16] V. Kantere, D. Tsoumakos, T. Sellis, N. Roussopoulos, GrouPeer: dynamic
clustering of P2P databases, Information Systems 34 (1) (2009) 62–86.

[17] E. Knorr, Dealing with the data explosion. URL: http://www.infoworld.com/d/
storage/dealing-data-explosion-690?page=0,0.

[18] L. Lakshmanan, J. Pei, Y. Zhao, QC-trees: an efficient summary structure
for semantic OLAP, in: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, ACM, 2003, p. 75.

[19] B. Loo, J. Hellerstein, R. Huebsch, S. Shenker, I. Stoica, Enhancing P2P
file-sharing with an Internet-scale query processor, in: Proceedings of the
30th International Conference on Very Large Data Bases–Volume 30, VLDB
Endowment, 2004, p. 443.
[20] K. Morfonios, Y. Ioannidis, CURE for cubes: cubing using a ROLAP engine,
in: Proceedings of the 32nd International Conference on Very Large Data
Bases–Volume 32, VLDB Endowment, 2006, p. 390.

[21] K. Morfonios, Y. Ioannidis, Revisiting the cube lifecycle in the presence of
hierarchies, The VLDB Journal The International Journal on Very Large Data
Bases 19 (2) (2010) 257–282.

[22] OLAP council APB-1 OLAP benchmark. http://www.olapcouncil.org/research/
resrchly.htm.

[23] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig latin: a not-so-
foreign language for data processing, in: SIGMOD’08, ACM, NewYork, NY, USA,
2008, pp. 1099–1110. doi:http://doi.acm.org/10.1145/1376616.1376726.

[24] W. Ooi, K. Zhou, PeerDB: a P2P-based system for distributed data sharing,
in: Proceedings of the 19th International Conference on Data Engineering,
ICDE’03, vol. 1063, 2003, pp. 633–644.

[25] T. Pitoura, N. Ntarmos, P. Triantafillou, Replication, Load Balancing and
Efficient Range Query Processing in DHTs, in: Lecture Notes in Computer
Science, vol. 3896, 2006, p. 131.

[26] M. Ripeanu, I. Foster, A. Iamnitchi, Mapping the gnutella network: properties
of large-scale peer-to-peer systems and implications for system design, IEEE
Internet Computing Journal 6 (1) (2002) 50–57.

[27] Y. Sismanis, A. Deligiannakis, Y. Kotidis, N. Roussopoulos, Hierarchical dwarfs
for the rollup cube, in: Proceedings of the 6th ACM InternationalWorkshop on
Data Warehousing and OLAP, ACM, New York, NY, USA, 2003, pp. 17–24.

[28] D. Stutzbach, R. Rejaie, Improving lookupperformance over awidely-deployed
DHT, in: Proceedings of Infocom, vol. 6, 2006.

[29] C. Tang, Z. Xu, S. Dwarkadas, Peer-to-peer information retrieval using self-
organizing semantic overlay networks, in: Proceedings of the 2003 Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communications, ACM, New York, NY, USA, 2003, pp. 175–186.

[30] The FreePastry project. http://freepastry.rice.edu/FreePastry.
[31] A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff,

R. Murthy, Hive—a warehousing solution over a MapReduce framework,
Proceedings of the VLDB Endowment 2 (2) (2009) 1626–1629.

[32] A.A. Vaisman, M.M. Espil, M. Paradela, P2P OLAP: data model, implementation
and case study, Information Systems 34 (2) (2009) 231–257.

[33] W. Wang, H. Lu, J. Feng, J. Yu, Condensed cube: an effective approach to
reducing data cube size, in: Proceedings of the International Conference on
Data Engineering, 2002.

Katerina Doka received her Diploma in Electrical and
Computer Engineering from the National Technical Uni-
versity of Athens in July 2005. She is currently a Ph.D.
candidate at the Computing Systems Laboratory, Depart-
ment of Electrical and Computer Engineering of the Na-
tional Technical University of Athens, conducting research
in the field of Large Scale Distributed Systems, Peer-to-
Peer Technologies and Grid/Cloud Computing.

Dimitrios Tsoumakos currently holds a senior researcher
position in the Computing Systems Laboratory of the
Department of Electrical and Computer Engineering of
the National Technical University of Athens (NTUA).
He received his Diploma in Electrical and Computer
Engineering from NTUA in 1999, joined the graduate
program in Computer Sciences at the University of
Maryland in 2000, where he received his M.Sc. (2002) and
Ph.D. (2006).

Nectarios Koziris Associate Professor, NTUA. His re-
search interests include parallel architectures, scalable
distributed systems and data & resource management for
large scale Internet systems. He has published more than
90 papers in international journals and in the proceed-
ings of international conferences. Nectarios Koziris is a
recipient of the IEEE IPDPS 2001 best paper award. He
served as a Chair and Program Committee member in var-
ious IEEE/ACM conferences. He is amember of IEEE, senior
member of ACM and chairs the Greek IEEE CS Chapter. He
also serves as the Vice-Chairman for the Greek Research

and Education Network.

http://dx.doi.org/http://dx.doi.org/10.1016/S0306--4379(02)00051--0
http://dx.doi.org/http://doi.acm.org/10.1145/1454159.1454166
http://hadoop.apache.org/core/
http://www.infoworld.com/d/storage/dealing-data-explosion-690?page=0,0
http://www.infoworld.com/d/storage/dealing-data-explosion-690?page=0,0
http://www.infoworld.com/d/storage/dealing-data-explosion-690?page=0,0
http://www.infoworld.com/d/storage/dealing-data-explosion-690?page=0,0
http://www.infoworld.com/d/storage/dealing-data-explosion-690?page=0,0
http://www.infoworld.com/d/storage/dealing-data-explosion-690?page=0,0
http://www.infoworld.com/d/storage/dealing-data-explosion-690?page=0,0
http://www.infoworld.com/d/storage/dealing-data-explosion-690?page=0,0
http://www.infoworld.com/d/storage/dealing-data-explosion-690?page=0,0
http://www.olapcouncil.org/research/resrchly.htm
http://www.olapcouncil.org/research/resrchly.htm
http://www.olapcouncil.org/research/resrchly.htm
http://www.olapcouncil.org/research/resrchly.htm
http://www.olapcouncil.org/research/resrchly.htm
http://www.olapcouncil.org/research/resrchly.htm
http://www.olapcouncil.org/research/resrchly.htm
http://dx.doi.org/http://doi.acm.org/10.1145/1376616.1376726
http://freepastry.rice.edu/FreePastry

	Online querying of d-dimensional hierarchies
	Introduction
	Motivation and problem description
	Sketch of HiPPIS and contribution summary

	Related work
	The hierarchical peer-to-peer indexing system
	Necessary notation
	Data insertion
	Data lookup and indexing mechanism
	Reindexing operation
	Locking
	Updates

	Discussion---enhancements
	Memory requirements
	Parameter selection
	Reindexing cost and load balancing
	Minimize global statistics collection
	Threshold selection

	Experimental results
	Performance with varying query distributions
	Reindexing cost
	Storage and load distribution
	Scaling the network and dataset size
	The effect of recurring queries
	The effect of aggregate queries
	Performance in dynamic environments
	Varying the number of dimensions
	Updates
	APB benchmark datasets

	Conclusions
	References

