
Optimizing Data Management in Grid

Environments

Antonis Zissimos, Katerina Doka, Antony Chazapis, Dimitrios Tsoumakos,
and Nectarios Koziris

National Technical University of Athens
School of Electrical and Computer Engineering

Computing Systems Laboratory
{azisi,katerina,chazapis,dtsouma,nkoziris}@cslab.ece.ntua.gr

Abstract. Grids currently serve as platforms for numerous scientific
as well as business applications that generate and access vast amounts
of data. In this paper, we address the need for efficient, scalable and
robust data management in Grid environments. We propose a fully de-
centralized and adaptive mechanism comprising of two components: A
Distributed Replica Location Service (DRLS) and a data transfer mech-
anism called GridTorrent. They both adopt Peer-to-Peer techniques in
order to overcome performance bottlenecks and single points of failure.
On one hand, DRLS ensures resilience by relying on a Byzantine-tolerant
protocol and is able to handle massive concurrent requests even during
node churn. On the other hand, GridTorrent allows for maximum band-
width utilization through collaborative sharing among the various data
providers and consumers. The proposed integrated architecture is com-
pletely backwards-compatible with already deployed Grids. To demon-
strate these points, experiments have been conducted in LAN as well
as WAN environments under various workloads. The evaluation shows
that our scheme vastly outperforms the conventional mechanisms in both
efficiency (up to 10 times faster) and robustness in case of failures and
flash crowd instances.

1 Introduction

One of the most critical components in Grid systems is the data management
layer. Grid computing has attracted several data-intensive applications in the
scientific field, such as bioinformatics, physics or astronomy. To a great extent,
these applications rely on analysis of data produced by geographically disperse
scientific devices such as sensors or satellites etc. For example, the Large Hadron
Collider (LHC) project at CERN [1] is expected to generate tens of terabytes of
raw data per day that have to be transferred to academic institutions around
the world, in seek of the Higgs boson. Apart from that, business applications
manipulating vast amounts of data have lately started to invade Grid environ-
ments. Gredia [2] is an EU-funded project which proposes a Grid infrastructure
for sharing of rich multimedia content. To motivate this approach, let us consider

R. Meersman, T. Dillon, P. Herrero (Eds.): OTM 2009, Part I, LNCS 5870, pp. 497–512, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

498 A. Zissimos et al.

the following scenario: News agencies have created a joint data repository in the
Grid, where journalists, photographers, editors, etc can store, search and down-
load various news content. Assume that just minutes after a breaking news-flash
(e.g., the riots in Athens), a journalist on scene captures a video of the protests
and uploads it on the Grid. Hundreds of journalists and editors around the world
need to be able to quickly locate and efficiently download the video in order to
include it in their news reports. Thus, it is imperative that, apart from optimized
data transfer, such a system should be able to cope with high request rates – to
the point of a flash crowd.

Faced with the problem of managing extremely large scale datasets, the Grid
community has proposed the Data Grid architecture [13], defining a set of basic
services. The most fundamental of them are the Data Transfer service, responsi-
ble for moving files among grid nodes (e.g., GridFTP [7]), the Replica Location
service (RLS), which keeps track of the physical locations of files and the Opti-
mization service, which selects the best data source for each transfer in terms of
completion time and manages the dynamic replica creation/deletion according
to file usage statistics.

However, all of the aforementioned services heavily rely on centralized mech-
anisms, which constitute performance bottlenecks and single points of failure:
The so far centralized RLS can neither scale to large numbers of concurrent
requests nor keep pace with frequent updates performed in highly dynamic en-
vironments. GridFTP fails to make optimal use of all bandwidth resources in
cases where the same data must be transferred to multiple sites and does not au-
tomatically maximize bandwidth utilization. Even when using multiple parallel
TCP channels, a manual configuration is required. Most importantly, GridFTP
servers face the danger of collapsing under heavy workload conditions, making
critical data unavailable.

In this paper, we introduce a novel data management architecture which in-
tegrates the location service with data transfer under a fully distributed and
adaptive philosophy. Our scheme comprises of two parts that cooperate to effi-
ciently handle multiple concurrent requests and data transfer: The Distributed
Replica Location Service (DRLS) that handles the locating of files and GridTor-
rent that manages the file transfer and related optimizations. This is pictorially
shown in Figure 1.

DRLS utilizes a set of nodes that, organized in a DHT, equally share the
replica location information. The unique characteristic of the DRLS is that, be-
sides the decentralization and scalability that it offers, it fully supports updates
on the multiple sites of a file that exist in the system. Since in many dynamic
applications data locations change rapidly with time, our Byzantine-tolerant
protocol guarantees consistency and efficiently handles updates on the various
data locations stored, unlike conventional DHT implementations. GridTorrent is
a protocol that, inspired by BitTorrent, focuses on real-time optimization of data
transfers on the Grid, fully supporting the induced security mechanisms. Based
on collaborative sharing, GridTorrent allows for low latency and maximum band-
width utilization, even under extreme load and flash crowd conditions. It allows

Optimizing Data Management in Grid Environments 499

transfers from multiple sites to multiple clients and maximizes performance by
piece exchange among the participants. A very important characteristic of the
proposed architecture is that it is designed to interface and exploit well-defined
and deployed Data Grid components and protocols, thus being completely back-
wards compatible and readily deployable. This work includes an experimental
section that includes a real implementation of the system and results over both
LAN and WAN environments with highly dynamic and adverse workloads.

Fig. 1. Pictorial description of the proposed architecture and component interaction.
Although DRLS nodes and Storage Servers appear to be a separate physical entity, it
is possible to coexist in order to exploit all the available resources.

2 Current Status

In this section we overview the related work in the area of data management. We
first go through existing practices for the Replica Location and Data Transfer
services. Next, we present a brief description of the BitTorrent protocol, which is
the basis of the proposed GridTorrent mechanism and we finally mention other
relevant data transfer mechanisms.

2.1 Locating Files

Centralized Catalog and Giggle. In Grid environments, it is common to
maintain local copies of remote files, called replicas [23] to guarantee availability
and reduce latencies. To work with a file, a Grid application first asks the RLS to
locate corresponding replicas of the requested item. This translates to a query
towards the Replica Catalogue, which contains mappings between Logical File
Names (LFNs) and Physical File Names (PFNs). If a local replica already exists
the application can directly use it, otherwise it must be transferred to the local
node. This initial architecture posed limitations to the scalability and resilience
of the system. Efforts on distributing the catalog resulted in the most widespread

500 A. Zissimos et al.

Fig. 2. Replica Location Service deploy-
ment scenario with Giggle

Fig. 3. Replica Location Service deploy-
ment scenario with P-RLS

solution currently deployed on the Grid, the Giggle Framework [14]. To achieve
distribution, Giggle proposes a two-tier architecture, comprising of the Local
Replica Catalogs (LRC s), which map LFNs to PFNs across a site and the Replica
Location Indices (RLI s), which map LFNs to LRCs (Figure 2).

Distributed Replica Location Service (DRLS). Still, the centralized na-
ture of the catalogs remains the bottleneck of the system, when the number of
performed searches increases. Furthermore, the updates in the LRCs induce a
complex and bandwidth-consuming communication scheme between LRCs and
RLIs. To this end, in [12] we proposed a RLS based on a Distributed Hash Table
(DHT). The underlying DHT is a modified Kademlia peer-to-peer network that
enables mutable storage. In this work, we enhance our solution by exploiting
XOROS [11], a DHT that provides a Byzantine-tolerant protocol for serializable
data updates directly at the peer-to-peer level. In this way, we can store static
information such as file properties with the traditional distributed hash table
put/get mechanism, as well as dynamic information such as the actual LFN to
PFN mappings with an update mechanism that ensures consistency.

Related Work. Peer-to-peer overlay networks and corresponding protocols
have already been incorporated in other RLS designs. In [10], Min Cai et al., have
replaced the global indices of Giggle with a Chord network, producing a variant
of Giggle called P-RLS. A Chord topology can tolerate random node joins and
leaves, but does not provide data fault-tolerance by default. The authors choose
to replicate the distributed RLI index in the successor set of each root node (the
node responsible for storage of a particular mapping), effectively reproducing
Kademlia’s behavior of replicating data according to the replication parameter
κ. In order to update a specific key-value pair, the new value is inserted as
usual, by finding the root node and replacing the corresponding value stored
there and at all nodes in its successor set. While there is a great resemblance
to this design and the one we propose, there is no support for updating key-
value pairs directly in the peer-to-peer protocol layer. It is an open question
how the P-RLS design would cope with highly transient nodes. Frequent joins
and departures in the Chord layer would require nodes continuously exchanging

Optimizing Data Management in Grid Environments 501

key-value pairs in order to keep the network balanced and the replicas of a
particular mapping in the correct successors. Our design deals with this problem,
as the routing tables inside the nodes are immune to participants that stay in
the network for a very short amount of time. Moreover, our protocol additions to
support mutable data storage are not dependent on node behavior; the integrity
of updated data is established only by relevant data operations. Finally, the P-
RLS approach retains the two-tier Giggle architecture, since the actual LFN to
PFN mappings are still kept in Local Replica Catalogs imposing a bottleneck for
the whole system with no support for load-balancing and failover mechanisms.
In another variant of an RLS implementation using a peer-to-peer network [21],
all replica location information is organized in an unstructured overlay and all
nodes gradually store all mappings in a compressed form. This way each node
can locally serve a query without forwarding requests. Nevertheless, the amount
of data (compressed or not) that has to be updated throughout the network
each time, can grow to such a large extent, that the scalability properties of the
peer-to-peer overlay are lost. In contrast to other peer-to-peer RLS designs, we
envision a service that does not require the use of specialized servers for locating
replicas. According to our design, a lightweight DHT-enabled RLS peer can even
run at every node connected to the Grid.

2.2 Transferring Files

The GridFTP Protocol. The established method for data transfer in the Grid
is GridFTP [7], a protocol defined by the Global Grid Forum and adopted by
the majority of the existing middleware. GridFTP extends the standard FTP,
including features like the Grid Security Infrastructure (GSI) [17] and third-party
control and data channels. A more distributed approach of the GridFTP service
has lead to the Globus Stripped GridFTP protocol [8], included in the current
release of the Globus Toolkit 4 [3]. Transfers of data striped or interleaved across
multiple servers, partial file transfers and parallel data transfers using multiple
TCP streams are some of the newly added features.

The GridTorrent Approach. Yet, the GridFTP protocol is still based on the
client-server model, inducing all the undesirable characteristics of centralized
techniques, such as server overload, single points of failure and the inability to
cope with flash crowds. We argue that large numbers of potential downloaders
together with the well-documented increase in the volume of data by orders of
magnitude stress the applicability of this approach. We propose a replica-aware
algorithm based on the P2P paradigm, through which data movement services
can take advantage of multiple replicas to boost aggregate transfer throughput.
In our previous work [27] there were made some preliminary steps towards this
direction. A first GridTorrent prototype was implemented and one could use
the Globus RLS and various GridFTP storage servers to download a file, as
well as exploit other simultaneous downloaders, thus making a first step towards
cooperation. Nevertheless, a core component of every Grid Service, the Globus
Security Infrastructure (GSI) wasn’t integrated with our previous prototype.

502 A. Zissimos et al.

Furthermore, in torrent-like architectures like GridTorrent there is the inherent
problem of not being able to upload a file unless there are downloaders interested
in the specified file. To tackle this problem we introduce the GridTorrent’s control
channel, a separate communication path that can be used to issue commands to
remote GridTorrent servers. Thus, in order to upload a file several GridTorrent
servers are automatically notified and after the necessary authentication and
authorization phases, the file is uploaded to multiple servers simultaneously and
more efficiently. There is no need for the user to issue another set of commands for
replication, because this is handled by GridTorrent. Finally, in order to scale to
larger deployments our prototype is integrated with the aforementioned DRLS.
In the present work, we extend GridTorrent and propose a complete architecture
which can be directly deployed in a real-life Grid environment and integrate with
existing Grid services.

The BitTorrent Protocol. Our work as well as other related work on the area
rely on the BitTorrent protocol [15]. BitTorrent is a peer-to-peer protocol that
allows clients to download files from multiple sources while uploading them to
other users at the same time, rather than obtaining them from a central server.
Its goal is to reduce the download time for large, popular files and the load on
servers that serve these files. BitTorrent divides every file in piece and each piece
in blocks. Clients find themselves through a centralized service called the tracker
and can exploit this fragmentation by simultaneously downloading blocks from
many sources. Useful file information is stored in a metainfo file, identified by
the extension .torrent. Peers are categorized in seeds when they already have
the whole file and leechers when they are still downloading pieces. The latest
version of the BitTorrent client [4] uses a Distributed Hash Table (DHT) for dy-
namically locating the tracker responsible for each file transaction. Note that, in
contrast to the Data Management architecture presented here, BitTorrent does
not yet use a DHT for storing and distributing file information and metadata.
The corresponding .torrent files still have to be downloaded from a central repos-
itory, or manually exchanged between users. The data transfer component of our
architecture, GridTorrent, enhances the BitTorrent protocol with new features
in order to make it compatible with existing Grid architectures. Moreover, new
functionality is added, so as to be able to instruct downloads to remote peers.
Finally, the tracker, which constitutes a centralized component of the BitTorrent
architecture is replaced by DRLS, eliminating possible performance bottlenecks
and single points of failure.

Related Work Using BitTorrent. A related work that is based in torrent-
like architecture for data transfers in Grid environments can be found in Grid-
Torrent Framework [18], which cites our previous work and therefore should not
be confused our proposed architecture. The authors of GridTorrent Framework fo-
cus on a centralized tracker to provide information for the available replicas, but
also use the tracker to impose security policies for data access. Their work also
extend to the exploitation of parallel TCP streams between two single peers in
order to surpass the limitations of the TCP window algorithm and saturate high

Optimizing Data Management in Grid Environments 503

bandwidth links. Nevertheless, the Framework’s centralized design suffers of all
the undesirable characteristics of centralized techniques, while the lack of integra-
tion with standardized Grid components remains a substantial disadvantage. A
similar work is presented in [25], where the authors compare BitTorrent to FTP
for data delivery in Computational Desktop Grids, demonstrating that the former
is efficient for large file transfers and scalable when the number of nodes increases.
Their work is concentrated in application environments like SETI@Home [16], dis-
tributed.net [5] and BOINC [9] where methods like cpu scavenging are used to get
temporary resources from Desktop computers. In contrast to GridTorrent, their
prototype uses centralized data catalog and repository, fails to communicate with
standard Grid components like GridFTP and RLS, lacks the support of Globus
Security Infrastructure and doesn’t tackle the problem of efficient file upload in
multiple repositories.

Other Data Transfer Mechanisms. The efficient movement of distributed
volumes of data is a subject of constant research in the area of distributed
systems. Various techniques have been proposed, apart from the ones mentioned
above, centralized or in the context of the peer-to-peer paradigm. Kangaroo [24]
is a data transfer system that aims at better overall performance by making
opportunistic use of a chain of servers. The Composite Endpoint Protocol [26]
collects high-level transfer data provided by the user and generates a schedule
which optimizes the transfer performance by producing a balanced weighting of
a directed graph. Nevertheless, the aforementioned models remain centralized.
Slurpie [22] follows a similar approach to BitTorrent, as it targets bulk data
transfer and makes analogous assumptions. Nonetheless, unlike BitTorrent, it
does not encourage cooperation.

3 GridTorrent

GridTorrent, a peer-to-peer data transfer approach for Grid environments, was
initially introduced in [27]. Based on BitTorrent, GridTorrent allows clients to
download files from multiple sources while uploading them to other users at the
same time, rather than obtaining them from a central server. Using BitTorrent
terminology, GridTorrent creates a swarm where leechers are users of the Grid
downloading data and seeds are storage elements or users sharing their data in
the Grid. The cooperative nature of the algorithm ensures maximum bandwidth
utilization and its tit-for-tat mechanism provides scalability in heavy load con-
ditions or flash crowd situations. More specifically, GridTorrent exploits existing
infrastructure since GridFTP repositories can be used as seeds with other peers
downloading from them using the GridFTP partial file transfer capability. The
.torrent file used in BitTorrent is replaced by the already existing RLS. In order
to start a file download only the file’s unique identifier (UID) is required, which is
actually the content’s digest. The rest of the information can be extracted from
the RLS using this UID. Finally, GridTorrent makes the BitTorrent’s tracker
service obsolete and integrates its functionality in the RLS. Therefore, all the

504 A. Zissimos et al.

peers that participate in a GridTorrent swarm are also registered in the RLS, so
that they are able to locate each other. In the following paragraphs we analyze
the further enhancements we have developed in GridTorrent.

3.1 Security

In a Grid environment, only authenticated users are considered trustworthy
of serving or downloading file fragments. Moreover, encryption is provided for
the transfer of sensitive information. In order to guarantee security, our data
transfer mechanism implements the Globus Grid Security Infrastructure (GSI).
Currently, GridTorrent deploys the standard GSI mechanisms, in terms of au-
thentication, integrity and encryption. A Java TCP socket is created and
wrapped, along with the host credentials, as a grid-enabled socket. This is per-
formed when the plain socket passes through the createSocket method of the
GssSocketFactory of the globus GSI API. Thus, an appropriate socket is created,
with respect to the input parameters that enable encryption, message integrity,
peer authentication or none of the above, according to the user’s preferences.

3.2 Control Channel

In GridTorrent, peers communicate with each other and exchange information
regarding the current file download according to the protocol. A novel feature of
GridTorrent, not found in BitTorrent protocol, is the ability of a peer to issue
commands to remote peers. We call this feature control channel, because it is
similar to the GridFTP’s control channel. This feature overcomes the BitTorrent
disadvantage of not being able to upload data before another peer is interested
to download them, which is common practice for a peer-to-peer network, but
not applicable to Grid environments. In detail, the GridTorrent control channel
supports the following commands:

Start. [UID] [RLS] Starts downloading the file with the given UID, getting
publishing information from the given RLS.

Start. [filename] [RLS] Starts sharing the existing file determined by the given
local filename. RLS will be used for publishing information regarding the
download.

Stop. [UID] Stops an active file download. Takes as a parameter the UID of
the file to stop downloading.

Delete. [filename] Deletes a local file.
List. Lists all active file downloads of the node.
Get. [UID] Gets statistics about an active file download regarding messages

exchanged and data transfer throughput. Takes the UID of the file as a
parameter.

Shutdown. Shuts down the GridTorrent peer.

4 Replica Location Service

The RLS used in GridTorrent stores two types of metadata: static information
(file properties) and dynamic information (peers that have the file or part of it).

Optimizing Data Management in Grid Environments 505

In our design, we select a set of attributes required to initiate a torrent-like data
transfer. Therefore, the file properties stored in the RLS are the following:

Logical filename (LFN): This is the name of the stored file. This name is
supplied by the user to identify his file.

File size: The total size of the file in bytes.
File hash type: The type of the hashing used to identify the whole file data.

Hashing is enabled in this level to ensure data consistency.
File hash: The actual file data hash. It is also used as a UID for each file.
Piece length: The size of each piece in which the file is segmented. The piece

is the smallest fraction of data that is used for validating and publishing
purposes. Upon a complete piece download and integrity check, other peers
are informed of the acquisition.

Piece hash type: The type of the hashing used to identify each piece of the
file. Hashing is enabled in this level to facilitate partial download and resume
download operations.

Piece hash: The actual piece data hash. All the hashes of all the pieces are
concatenated starting from the first piece.

Besides the file properties, the RLS also stores a list of all the physical locations
where the file is actually stored. This is described by a physical filename (PFN).
A physical filename has the following form:

protocol://fqdn:port/path/to/file

where protocol is the one that is used for the data transfer. Currently the
supported protocols are gsiftp (GridFTP) and gtp (GridTorrent). The fully
qualified domain name fqdn is the DNS registered name of the peer and it is
followed by the peer’s local path and the local filename.

4.1 Distributed RLS

RLS as a core Grid service must use distribution algorithms with unique scal-
ability and fault-tolerance properties–assets already available by peer-to-peer
architectures. To this end, in [12] we proposed a Replica Location Service based
on a Distributed Hash Table (DHT). The underlying DHT is a modified Kadem-
lia peer-to-peer network that enables mutable storage. We enhance this work by
exploiting the XOR Object Store (XOROS) [11], a DHT that provides serializ-
able data updates to the primary replicas of any key in the network. XOROS
uses a Kademlia [19] routing scheme, along with a modified protocol for insert-
ing and looking up values, that accounts for dynamic or Byzantine behavior of
overlay participants. The put operation allows either an in-place update, or a
read-modify-write via a single, unified transaction, that consists of a mutual ex-
clusion mechanism and an accompanying value propagation step. GridTorrent
has a modular architecture that enables the use of different types of Replica Lo-
cation Service per swarm. More specifically, when a user initiates a file transfer,
he must also supply the RLS URL, which has the following form:

protocol://fqdn:port

506 A. Zissimos et al.

Table 1. Security overhead in the overall file transfer

configuration mean time (sec) overhead
authentication 43,3 0%
authentication + integrity check 44,3 2%
authentication + encryption 55,3 27%

Currently the supported protocols are rls (Globus RLS) and drls (Distributed
RLS based on XOROS), so GridTorrent parses the URL to load the correspond-
ing RLS implementation. One advantage of the above modification is the use
of already implemented features to model our solution, preserving the back-
wards compatibility with the existing Grid Architecture. Therefore, the proposed
changes in the current Grid Architecture not only enhance the performance of
data transfers, but also seamlessly integrate with the current state-of-the-art in
Grid Data Management.

5 Implementation and Experimental Results

Our GridTorrent prototype implementation is entirely written in Java. The Grid-
Torrent client has bindings with Globus Toolkit 4 libraries [3] and exploits the
GridFTP client API, the Replica Location Service API and the Grid Security
Infrastructure API. These bindings enrich our prototype with the abilities to use
existing grid infrastructure, such as data stored in GridFTP servers, metadata
stored in Globus RLS and x509 certificates that are already issued to users and
services for authentication, authorization, integrity protection and confidential-
ity. For the experiments we started GridTorrent to a number of physical nodes
and issued remote requests through the control channel, to initiate and monitor
the overall file transfer.

5.1 GridTorrent Security and Fault-Tolerance Performance

We first test the effect that Grid Security has in the overall data transfer process
by monitoring the time needed for the transfer of a 128MB file. We distinguish
three different configurations for Globus GSI:

Authentication only: This is a simple configuration where both sides need
to present a valid x509 certificate signed from a Certificate Authority that is
mutually trusted.

Integrity check: In this configuration besides the mutual authentication, the
receiver verifies all messages to prevent man-in-the-middle attacks.

Encryption: This is the most secure configuration, where apart form mutual
authentication and integrity check, every message is also encrypted.

Optimizing Data Management in Grid Environments 507

Fig. 4. Average time of completion over
various number of failure rates and block
sizes

Fig. 5. Average size of uploaded data
from leechers only over various number of
failure rates and block sizes

The test is executed 100 times between a pair of peers (different each time) in-
side the same LAN. As shown in Table 1, only the Globus GSI configuration that
enables encryption has considerable (about 30%) cost on the file transfer latency.
This overhead is natural, because when encryption is enabled every message is
duplicated in memory and parsed by a cpu-intensive cryptographic algorithm.

We continue our experiments by testing GridTorrent’s tolerance in an error-
prone network. For this purpose we use a single server acting as seed for a file
of 128MB and 16 clients that simultaneously download the file. After extensive
testing we have tuned GridTorrent to use a piece size of 1024KB. In GridTorrent,
just like BitTorrent, hashes are kept in a per piece basis, and peers exchange a
smaller fraction of data called block. To simulate the failure rate, every peer
(leecher or seed) makes a decision to sent altered blocks based on a random
uniformly distributed function, without enabling any globus security option. The
results are presented in Figures 4 and 5. First of all, in all cases the download
completes with an acceptable overhead, in contrast to GridFTP which has no
mechanism of protection against these kinds of errors. Furthermore, we notice
that as the failure rate increases transfers with smaller block sizes are more
heavily affected, because one bad block causes the retransmission of all the blocks
in a certain piece. So in cases where block size is 1

8 of the piece size, the slowdown
is 3 to 4 times in comparison with the case of a block the size of a piece and in
failure rates up to 16%.

5.2 GridTorrent vs. GridFTP Performance

In this experiment we compare the performance of the GridTorrent prototype
against the current GridFTP implementation in both Local and Wide Area Net-
work environments. Specifically, we increase the number of concurrent requests
over a single 128MB file from different physical nodes. Results for different file
sizes (up to 512MB) are qualitatively similar. We measure the minimum, maxi-
mum and average completion time of this operation on all requesters. Our setup
assumes a single server that seeds this file and up to 32 physical machines that
issue simultaneous download requests. For the LAN experiments, we use our

508 A. Zissimos et al.

Fig. 6. Min, max and average time of
completion for both GFTP and GTP over
various number of downloaders in the
LAN setting

Fig. 7. Min, max and average size of up-
loaded data from leechers only in the LAN
setting

Fig. 8. Min, max and average time of
completion for both GFTP and GTP over
various number of downloaders in the
WAN setting

Fig. 9. Min, max and average size of up-
loaded data from leechers only in the
WAN setting

laboratory cluster infrastructure with gigabit ethernet interconnect. For the
WAN experiments, we allocate the same amount of nodes in PlanetLab [20, 6].
In this environment, there exist several heavily loaded nodes, geographically dis-
tributed with various network latencies and bandwidth constraints. Obviously,
PlanetLab offers an environment more similar to a real world Grid environment,
where requests may occur from different places over the globe using personal
computers. Location information on the file, the list of peers that obtain or are
currently downloading the file, as well as other file metadata are stored in DRLS,
located in a single machine which simulates 30 nodes in a XOROS DHT.

In Figure 6, we present the completion times for the LAN setup. We notice
that GridTorrent can be over 10 times faster than GridFTP in all measured
times. This occurs for the largest number of leechers. GridFTP cannot enforce
cooperation among nodes; thus a single server must accommodate all clients in
an serialized manner. One would expect that GridFTP would not be affected by
the flash crowd effect in a LAN, especially with the Gigabit ethernet connectiv-
ity, but this is not the case. GridTorrent shows remarkable performance in all

Optimizing Data Management in Grid Environments 509

Table 2. The effect of the κ parameter in DRLS

κ α ε Average Messages Mean latency (sec)
20 3 2 44 1.37
15 3 2 42 1.06
10 3 2 30 0.83
5 3 2 22 0.61

three metrics, as they remain unaltered by the increase in requests. Our method
can be readily employed to sustain flash crowd effects as, due to the increasing
cooperation among peers, it effectively reduces the load of the single server and
provides adaptive portions of the file to the rest of the nodes. In Figure 7, we
present this cooperation in terms of bytes sent exclusively among the leechers.
We notice that, as the number of leechers increase, this traffic increases, show-
ing the clients’ active part in this process. On average, each leecher seems to be
responsible for sending almost one file’s worth of data to the other leechers and
no more than two times the file size in maximum.

Figure 8 summarizes our results from the WAN setup. It is evident that
GridFTP cannot cope with increasing transfer loads in a real world environment.
GridFTP’s minimum times remain constantly low and close to GridTorrent’s due
to the fact that there always exists at least one leecher close to the single server
that downloads the file faster. Furthermore, we register a major difference in
GridFTP’s maximum, minimum and average times (e.g., for 32 leechers the last
one receives the file 30 times slower than the faster one and about 2 times slower
on average). This large variance is due to the protocol’s inability to cope with
heterogeneity – small number of close nodes finish early while the rest of the
clients that are not close to the server are drastically affected.

In GridTorrent, the closest nodes that finish faster are exploited and upload
data to the remaining ones, decreasing the overall completion time that grace-
fully scales with the number of simultaneous leechers. Our method is 3 to 10
times faster both on average and in the worst case, while it exhibits very small
variation between the three reported metrics. In Figure 9, we can see the level of
cooperation between the leechers as they increase in numbers. We clearly notice
a greater variance in the bytes sent by each peer compared to the LAN setting.
This shows how adaptive GridTorrent is: Close nodes that finish early contribute
to the other peers more than average, while the are few nodes that finish late and
cannot share interesting data with the rest of the peers. The WAN experiment
depicts in the best way why our protocol is a robust, bandwidth efficient means
of file transfer that vastly outperforms current practices.

5.3 DRLS Performance

To evaluate the DRLS implementation we created a scenario where 64 peers,
storing about 1000 items perform random lookups and updates at increasing
rates. Measuring the mean number of messages and time required for each

510 A. Zissimos et al.

operation reveals that in the absence of node churn, results remain almost con-
stant, even when constantly doubling the request rate from 1 operation every
6 seconds up to 10 operations

sec . This suggests that the underlying XOROS pro-
tocol scales to flash-crowd usage patterns as expected. When participants start
to leave and new ones enter some messages get lost, so nodes have to wait for
timeouts to expire before proceeding with a command. Nevertheless, as the node
population settles and routing tables are updated, the performance characteris-
tics return to the expected levels. An interesting find is that during periods of
churn, a higher request rate may result in more messages, but this helps nodes
react quicker to overlay changes and refresh their routing tables faster.

During this series of experiments we have also investigated the impact of the
various DHT parameters: κ, which controls the number of replicas kept for each
data item and sets the quorum size for the mutex protocol, α, which defines
how many parallel messages can be in-flight during an operation and ε, which
marks the number of peers that may exhibit arbitrary behavior or fail before
a request is completed. As expected, the replication factor κ plays the most
important role in shaping both message count and latency. Table 2 summarizes
the results for multiple runs of the aforementioned scenario, with different values
of κ. Lowering κ reduces the number of nodes that should be contacted in each
operation, thus causing the overall latency to drop. However, mean latency is not
directly proportional to the number of messages, as a lot of communication is
done in parallel. Dividing the latency numbers with the average messaging cost
of 80 msec results in the mean number of messages have to be sent in serial order,
either due to the protocol or the α parameter. When the network is small, like
the case of 64 nodes, we believe that a replication factor of 5 should be enough.
On the other hand, when deploying DRLS to a massive number of participants
(i.e. a “Desktop Grid”), keeping κ to the default value of 20 can help avoid data
loss in case of sudden network blackouts or other unplanned and unadvertised
peer problems, even if the messaging cost is higher.

6 Conclusion

In this paper, we describe a P2P-based data management architecture that com-
prises of GridTorrent and DRLS. GridTorrent is a cooperative data transfer
mechanism that maximizes performance by adaptively choosing where each node
retrieves file segments from. DRLS is a distributed replica service which is based
on a modified kademlia DHT, allowing efficient processing even during node
churn. Our proposed solution is compatible with the current Data Grid archi-
tecture and can be utilized without any changes by already deployed middleware.
Experiments conducted both in LAN and WAN environments (the PlanetLab
infrastructure), show that GridTorrent vastly outperforms GridFTP, being up
to 10 times faster. Moreover, experiments on DRLS in a dynamic environment
show that the benefits of a peer-to-peer network can be readily exploited to
provide a scalable Grid service without significant loss in performance. DRLS is
able to provide reliable location services even when the load rates multiply.

Optimizing Data Management in Grid Environments 511

References

1. The Large Hadron Collider, http://lhc.web.cern.ch/lhc/
2. The GREDIA Project, http://www.gredia.eu/
3. The official site of Globus Toolkit, http://globus.org/toolkit
4. The official BitTorrent client, http://www.bittorrent.org
5. Distributed.net, RSA Labs 64bit RC5 Encryption Challenge,

http://www.distributed.net

6. PlanetLab: An open platform for developing, deploying, and accessing planetary-
scale services, http://www.planet-lab.org/

7. Allcock, B., Bester, J., Bresnahan, J., Chervenak, A.L., Foster, I., Kesselman, C.,
Meder, S., Nefedova, V., Quesnel, D., Tuecke, S.: Data management and transfer
in high-performance computational grid environments. Parallel Computing 28(5),
749–771 (2002)

8. Allcock, W., Bresnahan, J., Kettimithu, R., Link, M., Dumitresku, C., Raicu, I.,
Foster, I.: The globus striped gridftp framework and server. In: Proceedings of the
ACM/IEEE Conference on Supercomputing, SC 2005 (2005)

9. Anderson, D.: Boinc: A system for public-resource computing and storage. In:
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing
(2004)

10. Cai, M., Chervenak, A., Frank, M.: A peer-to-peer replica location service based
on a distributed hash table. In: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, Pittsburgh, PA (November 2004)

11. Chazapis, A., Koziris, N.: Xoros: A mutable distributed hash table. In: Proceedings
of the 5th International Workshop on Databases, Information Systems and Peer-
to-Peer Computing (DBISP2P 2007), Vienna, Austria (2007)

12. Chazapis, A., Zissimos, A., Koziris, N.: A peer-to-peer replica management service
for high-throughput grids. In: Proceedings of the 2005 International Conference on
Parallel Processing (ICPP 2005), Oslo, Norway (2005)

13. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The data grid:
Towards an architecture for the distributed management and analysis of large
scientific datasets. Journal of Network and Computer Applications (2000)

14. Chervenak, A., Palavalli, N., Bharathi, S., Kesselman, C., Schwartzkopf, R.,
Stockinger, H., Tierney, B.: Performance and Scalability of a replica location ser-
vice. In: Proc. of the 13th IEEE International Symposioum on High Performance
Distributed Computing Conference (HPDC), Honolulu (June 2004)

15. Cohen, B.: Incentives build robustness in bittorrent. In: Workshop on Economics
of Peer-to-Peer Systems, Berkeley, CA, USA (June 2003)

16. Sullivan III, W.T., Werthimer, D., Bowyer, S., Cobb, J., Gedye, D., Anderson,
D.: New major seti project based on project serendip data and 100,000 personal
computers. In: Astronomical and Biochem ical Origins and the Search for Life in
the Universe, Proc. of the Fifth Intl. Conf. on Bioastronomy (1997)

17. Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A security architecture for com-
putational grids. In: Proceedings of the 5th ACM conference on Computer and
communications security, pp. 83–92. ACM Press, New York (1998)

18. Kaplan, A., Fox, G., von Laszewski, G.: Gridtorrent framework: A high-
performance data transfer and data sharing framework for scientific computing.
In: Proceedings of GCE 2007, Reno, Nevada (2007)

19. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based
on the xor metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, p. 53. Springer, Heidelberg (2002)

http://lhc.web.cern.ch/lhc/
http://www.gredia.eu/
http://globus.org/toolkit
http://www.bittorrent.org
http://www.distributed.net
http://www.planet-lab.org/

512 A. Zissimos et al.

20. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A blueprint for introducing
disruptive technology into the internet. In: Proceedings of HotNets–I, Princeton,
NJ (October 2002)

21. Ripeanu, M., Foster, I.: A decentralized, adaptive, replica location service. In: Pro-
ceedings of the 11th IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC-11 2002), Edinburgh, UK (July 2002)

22. Sherwood, R., Braud, R., Bhattacharjee, B.: Slurpie: A cooperative bulk data trans-
fer protocol. In: Proceedings of IEEE INFOCOM (March 2004)

23. Stockinger, H., Samar, A., Holtman, K., Allcock, B., Foster, I., Tierney, B.: File
and object replication in data grids. Cluster Computing 5(3), 305–314 (2002)

24. Thain, D., Basney, J., Son, S.-C., Livny, M.: The kangaroo approach to data move-
ment on the grid. In: Proceedings of the Tenth IEEE Symposium on High Perfor-
mance Distributed Computing, HPDC10 (2001)

25. Wei, B., Fedak, G., Cappello, F.: Collaborative data distribution with bittorrent for
computational desktop grids. In: Proceedings of the 4th International Symposium
on Parallel and Distributed Computing, ISPDC 2005 (2005)

26. Weigle, E., Chien, A.A.: The composite endpoint protocol (cep): Scalable endpoints
for terabit flows. In: Proceedings of the IEEE International Symposium on Cluster
Computing and the Grid, CCGrid 2005 (2005)

27. Zissimos, A., Doka, K., Chazapis, A., Koziris, N.: Gridtorrent: Optimizing data
transfers in the grid with collaborative sharing. In: Proceedings of the 11th Pan-
hellenic Conference on Informatics, Patras, Greece (2007)

	Optimizing Data Management in Grid Environments
	Introduction
	Current Status
	Locating Files
	Transferring Files

	GridTorrent
	Security
	Control Channel

	Replica Location Service
	Distributed RLS

	Implementation and Experimental Results
	GridTorrent Security and Fault-Tolerance Performance
	GridTorrent vs. GridFTP Performance
	DRLS Performance

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

