
Analysis and Comparison of P2P Search Methods ∗

Dimitrios Tsoumakos
Department of Computer Science

University of Maryland, College Park
dtsouma@cs.umd.edu

Nick Roussopoulos
Department of Computer Science

University of Maryland, College Park
nick@cs.umd.edu

Abstract
The popularity attributed to current Peer-to-Peer appli-

cations makes the operation of these distributed systems
very important for the Internet community. Efficient ob-
ject discovery is the first step towards the realization of
distributed resource-sharing. In this work, we present a
detailed overview of existing search methods for unstruc-
tured Peer-to-Peer networks. We analyze the performance
of the algorithms relative to various metrics, giving empha-
sis on the success rate, bandwidth-efficiency and adaptation
to dynamic network conditions. Simulation results are used
to empirically evaluate the behavior of nine representative
schemes under a variety of different environments.

1 Introduction

Peer-to-Peer (hence P2P) computing represents the no-
tion of sharing resources available at the edges of the Inter-
net [20]. A large number of systems and architectures that
utilize this technology have emerged since its initial suc-
cess ([7, 9, 14], etc.). The P2P paradigm dictates a fully-
distributed, cooperative network design, where nodes col-
lectively form a system without any supervision. Its ad-
vantages include robustness in failures, extensive resource-
sharing, self-organization, load balancing, data persistence,
anonymity, etc.

Today, many popular P2P applications operate on un-
structured networks. In these systems, peers connect in an
ad-hoc fashion, the location of the documents is not con-
trolled by the system and no guarantees for the success or
the complexity of a search are offered. More important,
peers have a local only knowledge of the network in which
nodes enter and leave frequently.

In this work, we describe a variety of proposed search al-
gorithms for unstructured P2P networks. A search process
includes aspects such as the query-forwarding method, the
set of nodes that receive query-related messages, the form

∗This material is based upon work supported by, or in part by, the U.S.
Army Research Laboratory and the U.S. Army Research Office under con-
tract/grant number DAAD19-01-1-0494

of these messages, local processing, stored indices and their
maintenance, etc. This paper describes many representa-
tive approaches and analyzes their performance. We focus
on the behavior of these algorithms for each of the follow-
ing metrics: Efficiency in object discovery (accuracy and
number of hits), bandwidth consumption and adaptation to
changing topologies and workloads. The first metric mea-
sures search accuracy and the number of discovered objects
per request (this is very important for many applications,
as it enables efficient object retrieval). Minimizing message
production always represents a high-priority goal for all dis-
tributed systems. Finally, it is important that any search al-
gorithm adapts to changing conditions, since in most P2P
networks users frequently enter and leave the system, as
well as update their collections.

To evaluate our analysis, we simulate nine of the de-
scribed methods and present a direct quantitative compar-
ison of their performance. We identify the relative advan-
tages and disadvantages of each method as well as the con-
ditions under which they can be most or least effective. To
our knowledge, this is the first work that attempts a direct
comparison of a large and diverse set of search techniques
proposed for unstructured P2P systems. We believe this
is an important contribution that can provide a better un-
derstanding of the various search mechanisms and assist in
choosing an algorithm that best fits a particular application.

2 Related Work

Gnutella [7] and Napster [13] are the focus of two mea-
surement studies: Reference [18] attempts a detailed char-
acterization of the participating end-hosts, while [2] mea-
sures the locality of stored and transferred documents. In
[19], a traffic measurement for three popular P2P networks
is being conducted at the border routers of a large ISP. Ex-
tensive results for traffic attributed to HTTP, Akamai and
P2P systems are also presented in [17]. Quantitative com-
parisons between the search methods in [10, 11] and the
original Gnutella algorithm are presented in these two pa-
pers. Their main comparison metric is bandwidth consump-
tion. The work in [23] presents a thorough comparison be-

tween the proposed algorithm and the search schemes intro-
duced in [5, 11] on a variety of metrics.

Our work focuses exclusively on proposed search meth-
ods for unstructured P2P networks and provides a direct ex-
perimental comparison of these algorithms under different
environments.

3 P2P Search Algorithms

We first describe our system model for search in unstruc-
tured P2P networks. Peers and documents (or objects) are
assumed to have unique identifiers, with object IDs used to
specify the query target. Nodes that are directly linked in
the overlay are called neighbors. We assume that peers ob-
tain only a local knowledge of the network (e.g., are only
aware of their neighbors). Each peer retains a collection of
documents, while it makes requests for those it wishes to
obtain. Search algorithms cannot in any way dictate object
placement and replication in the system.

Objects are assumed to be of varying popularity, which
affects the respective number of replicas and received re-
quests. The replication distribution dictates the number and
identity of objects stored at each node. The query distribu-
tion controls the frequency of requests for each object.

A search is successful if it discovers at least one replica
of the requested object. The ratio of successful to total
searches made is called the success rate (or accuracy). A
search can result to multiple discoveries (or hits), which
are replicas of the same object stored at different nodes.
A global TTL parameter represents the maximum hop-
distance a query can reach before it gets discarded.

3.1 Search Taxonomy

There are two general strategies used to search for an
object: Search in a blind fashion, trying to propagate the
query to a sufficient number of nodes in order to satisfy
the request; or utilize information about document locations
and thus perform an informed search. The semantics of the
used information range from simple forwarding hints to ex-
act object locations. The placement of this information can
also vary: In centralized approaches (e.g., [13]), a central
directory known to all peers exists. Distributed approaches
can also be sub-divided into pure and hybrid. In pure ap-
proaches (e.g., [4, 10, 23]), all participating peers maintain
some portion of the information. In hybrid architectures
(e.g., [5]), certain nodes assume the role of a super-peer
and the rest become leaf-nodes. Each super-peer acts as a
proxy for its leaf-nodes by indexing all their documents and
serving their requests.

The semantics of the stored indices in informed ap-
proaches can be used for another categorization. Indices
might relate to exact object locations (e.g., [21]), probability
of discovery through a link (e.g., [23]), number of objects
through a link (e.g., [4]), or other metrics (e.g., [1]).

Finally, we can categorize search schemes according to
the query forwarding method into flood-based (utilizing the
standard flooding scheme or one of its variations) and non
flood-based (e.g., [11, 15]).

3.2 Blind Search Methods

GNUTELLA [7]: The original Gnutella algorithm (or
flooding scheme) contacts all accessible nodes within T T L
hops. Its basic characteristics are its simplicity and the huge
overhead it produces by contacting many nodes.

Modified-BFS [10]: In this variation of the flooding
scheme, peers randomly choose only a ratio of their neigh-
bors to forward the query to. This reduces the average mes-
sage production, but still contacts a large number of peers.

Iterative Deepening: Two similar approaches that use
consecutive BFS searches at increasing depths are described
in [11, 24]. These algorithms achieve best results when the
search termination condition relates to a user-defined num-
ber of hits and it is possible that searching at small depths
will satisfy the query. In a different case, they produce even
bigger loads than the standard flooding mechanism.

Random Walks [11]: In Random Walks, the requesting
node sends out k query messages to an equal number of ran-
domly chosen neighbors. Each of these messages follows
its own path, having intermediate nodes forward it to a ran-
domly chosen neighbor at each step. These queries are also
known as walkers. A walker terminates either with a suc-
cess or a failure. Failure can be determined by two different
methods: The T T L-based method and the checking method,
where walkers periodically contact the query source asking
whether the termination conditions have been satisfied. The
algorithm achieves a message reduction by over an order
of magnitude compared to the standard flooding scheme. It
also achieves some local load balancing, since no nodes are
favored in the forwarding process over others. On the other
hand, success rates and number of hits vary greatly depend-
ing on network topology and the random choices made. An-
other drawback of this method is its inability to adapt to dif-
ferent query loads, since queries for popular and unpopular
objects are treated in the same manner.

3.3 Informed Search Methods

Super-Peer approaches: In Gnutella2 (G2) [22], when
a super-peer (or hub) receives a query from a leaf, it for-
wards it to its relevant leaves and also to its neighboring
hubs. These hubs process the query locally and forward it to
their relevant leaves. No other nodes are visited with this al-
gorithm. Neighboring hubs regularly exchange local repos-
itory tables to filter out unnecessary traffic. In GUESS [5], a
search is conducted by iteratively contacting different (not
necessarily neighboring) super-peers and having them ask
all their leaf-nodes, until a number of objects are found. The
order with which super-peers are chosen is not specified.

2

Both schemes rely on a dynamic hierarchical structure
of the network. They present similar solutions for reducing
the effects of flooding by utilizing the structure of hybrid
networks. The number of leaf-nodes per super-peer must
be kept high, even after node arrivals/departures. This is
the most important condition in order to reduce message
forwarding and increase the number of discovered objects.

Intelligent-BFS [10]: This is an informed version of
modified-BFS. Nodes store query-neighborID tuples for re-
cently answered requests from (or through) their neighbors
in order to rank them. First, a peer identifies all queries
similar to the current one, according to a query similar-
ity metric; it then chooses to forward to a set number of
its neighbors that have returned the most results for these
queries. If a hit occurs, the query takes the reverse path
to the requester and updates local indices. This approach
focuses more on object discovery than message reduction.
At the cost of an increased message production compared
to modified-BFS (because of the update process), the algo-
rithm increases the number of hits. It achieves high accu-
racy, enables knowledge sharing and induces no overhead
during node arrivals/departures. On the other hand, its mes-
sage production is very large and only increases with time
as knowledge is spread over the nodes. It shows no easy
adaptation to object deletions or peer departures, because
the algorithm does not utilize negative feedback and for-
warding is based on ranking. Finally, its accuracy depends
highly on the assumption that nodes specialize in certain
documents.

APS [23]: In APS, each node keeps a local index consist-
ing of one entry for each object it has requested per neigh-
bor. The value of this entry reflects the relative probability
of this node’s neighbor to be chosen as the next hop in a
future request for the specific object. Searching is based
on the deployment of k walkers and probabilistic forward-
ing. Each intermediate node forwards the query to one of
its neighbors with probability given by its local index. In-
dex values are increased on successful paths and decreased
otherwise. The quality of the APS indices is refined as more
queries are made. Every node on the walkers’ paths updates
its indices according to search results, so peers eventually
share and adjust this knowledge with time. Walkers are di-
rected towards objects or gradually redirected if misses oc-
cur. APS is also very bandwidth-efficient (achieving very
similar levels with Random Walks) and induces zero over-
head over the network at join/leave/update operations. The
s-APS modification adaptively selects the most bandwidth-
efficient strategy to minimize the amount of update mas-
sages along the reverse path. On the other hand, these ad-
vantages are mainly seen when many different peers con-
tribute with their workloads. Moreover, both APS and Ran-
dom Walks have k as an upper bound in their hits per search.

Local Indices (LI) [24]: Each node indexes the objects

stored at all nodes within a certain radius r and can answer
queries on behalf of all of them. A search is performed in
a BFS-like manner, but only nodes accessible from the re-
quester at certain depths process the query. To minimize the
overhead, the hop-distance between two consecutive depths
must be 2r + 1. This approach resembles the two search
schemes for hybrid networks. The method’s accuracy and
hits are very high, due to the indexing scheme. On the other
hand, message production is comparable to flooding, even if
the processing time is smaller because many nodes just for-
ward the query. The scheme requires a flood with T T L = r
whenever a node joins/leaves the network or updates its lo-
cal repository, so the overhead becomes even larger for dy-
namic environments.

GIA [1]: In GIA, requesting nodes deploy biased walk-
ers in order to discover various objects. Each peer chooses
to forward the query to the neighbor with the highest an-
nounced capacity. This is a user-defined metric that re-
flects the processing power of a node inside the system.
Moreover, the protocol requires that each peer indexes the
documents of its neighbors. This scheme also utilizes
a topology-adaptation algorithm which re-configures the
overlay connectivity such that each node is connected to a
number of peers proportional to its capacity. The biased
walkers are then directed towards highly connected neigh-
bors and, probabilistically, to those with the highest number
of indexed objects. Finally, the scheme provides a flow-
control mechanism which allows peers to control the rate
at which they can accept and process requests from their
neighbors. Once the topology has been set, we expect GIA
to perform very bandwidth-efficient searches with several
hits. On the other hand, the adaptation algorithm plus the
indexing of the neighbors’ repositories increase the respon-
sibilities of each peer as well as the communication over-
head. Another issue is how fast can the algorithm work for
joining peers and at what cost for their neighborhood.

Routing Indices (RI) [4]: Documents are assumed to fall
into a number of thematic categories. Each node stores an
approximate number of documents from every category that
can be retrieved through each outgoing link (i.e., not only
from that neighbor but from all nodes accessible from it).
The forwarding process is similar to DFS: A node that can-
not satisfy the query stop condition with its local repository
will forward it to the neighbor with the highest “goodness”
value. Three different functions which rank the out-links
according to the expected number of documents discovered
through them are also defined. The algorithm backtracks if
more results are needed. This approach trades index main-
tenance overhead for increased accuracy. While a search is
very bandwidth-efficient, RIs require flooding in order to be
created and updated, so the method is not suitable for highly
dynamic networks. Moreover, stored indices can be inaccu-
rate due to thematic correlations, over- or under-counts in

3

document partitioning and network cycles.
In [15], each node holds a number of bloom filters for

each neighbor. The ith filter summarizes documents that
can be found i hops away through that specific link. Nodes
forward queries to the neighbor whose smaller depth bloom
filter matches a hashed representation of the object ID. After
a certain number of steps, if the search is unsuccessful, it is
handled by a deterministic algorithm instead of backtrack-
ing. The scheme’s expectation is to find only one replica
of the object with high probability. Index maintenance re-
quires flooding messages initiated from nodes that arrive or
update their collections.

Distributed Resource Location Protocol (DRLP) [12]:
Nodes with no information about the location of a docu-
ment forward the query to each of their neighbors with a
certain probability. If an object is found, the query takes the
reverse path to the requester, storing the document location
at those nodes. In subsequent requests, nodes with indexed
location information directly contact the specific node. If
that node does not currently obtain the document, it just ini-
tiates a new search as described before. This algorithm ini-
tially utilizes flooding to find the locations of an object. In
subsequent requests, it might take only one message to dis-
cover it. A small message production is achieved only with
a large workload that enables the initial cost to be amor-
tized over many searches. In rapidly changing networks,
this approach fails and more nodes have to perform blind
search. This also affects the number of hits: If many blind
searches are made, then many results are found; if many di-
rect queries take place, then only one replica is discovered.

Gnutella with Shortcuts (GS) [21]: In this work, the au-
thors propose the addition of shortcuts (i.e., direct links to
peers that have recently proved useful in answering queries)
to a Gnutella-like overlay. The original flooding mecha-
nism is initially used to locate documents. Peers that pro-
vide answers are indexed by the requesters, following the
assumption that they could provide answers to more re-
quests. When a new query is made, nodes first forward it
to their shortcuts (ranked in a descending order of useful-
ness — usually the success rates). If all shortcuts fail, the
standard flooding scheme is again used to locate the object.
This approach resembles the DRLP scheme but stores more
than one pointer and keeps statistics on them. For semanti-
cally related queries, we expect it to quickly identify rele-
vant peers and mostly use the shortcuts for object location.
Moreover, we anticipate a very high success rate since the
fall-back mechanism is flooding. On the other hand, if peers
make many unrelated queries or they do not store relevant
content, it is possible that the shortcuts will fail, which in
turn means that the system pays the price of a full-scale
flooding. The same is true when objects are removed or
peers depart frequently.

New Approaches: Recently, there has been an effort to

combine the advantages of structured systems (also known
as Distributed Hash Tables — DHTs) and unstructured
ones. In [6], an immediate neighborhood area is defined
for each peer. Object placement inside these overlapping
areas is performed in a DHT-like fashion. Searches use the
standard flooding mechanism except that only certain areas
are probed. In [3], peers are grouped into possession rules,
according to whether they contain a specific item or not.
Nodes search inside one possession rule in a blind fashion.
The possession rule is chosen by a greedy mechanism ac-
cording to past query results.

4 Simulation Results

In this section we present results for nine of the described
methods: (G2, Random Walks, Modified-BFS, Intelligent-
BFS, Local Indices, s-APS, DRLP, GS and GIA). The
simulated methods are representative blind and informed
schemes, both flood and non flood-based, with or with-
out user-initiated index updates (that is, updates triggered
strictly by the search process). We briefly summarize our
simulation model here.

In our experiments, we utilize the GT-ITM [25] and Inet-
3.0 [8] topology generators to produce sets of random and
power-law graphs respectively. We assume a pure P2P
model, where all peers equally make and forward requests.
For each setup, the results are averaged over a set of 10
similar graphs for each described topology. We also present
results on a real gnutella graph [16], with 61,685 nodes and
average degree d = 4.6.

By default, we assume 100 objects of decreasing pop-
ularity, with object 1 being the most popular. The small
number of objects enables a better observation of the effect
that popularity has over the performance of a search. A zip-
fian distribution with parameter a = 0.82 is used to model
both query and replication distributions and achieve work-
loads similar to [2]: The top-10% of the objects account for
about 50% of all stored objects and receive about 50% of all
requests. The replication ratios range from 11% to 0.25%
for the least popular object. With this distribution, around
8,500 replicas of all 100 objects exist inside our network
(each peer holds less than one object on average). Requester
nodes are randomly chosen and represent about 20% of the
total number of nodes. Each requester makes about 1,500
queries over a time period. We do not allow extra replicas
to be stored (i.e., we only consider the search phase, not ob-
ject retrieval). Finally, the T T L parameter is set to 5, since
larger values produced very similar results.

To simulate dynamic network behavior, we insert off-
line nodes and remove active ones with varying frequency.
The objects are also re-distributed to model file insertions
and deletions. We always keep approximately 80% of the
network nodes active, while arriving nodes start function-
ing without utilizing any (possibly built) prior knowledge.

4

Object re-location always follows the initial distribution pa-
rameters.

The Intelligent-BFS method was modified to allow for
object-ID requests. Index values at peers now represent the
number of replies for an object through each neighbor and
nodes choose the neighbors with the highest index values
when forwarding a query. For Modified-BFS’s, DRLP’s and
Intelligent-BFS’s flood-based search, nodes choose an equal
number of neighbors to forward a query in order to make di-
rect comparisons. For G2/GUESS, peers randomly choose
k neighbors to forward the query to. The chosen nodes for-
ward the query to all their neighbors. By modifying the
value for k we can simulate the operation of both G2 (with k
always larger than the average node degree) and GUESS. In
our simulations, G2/GUESS operate on a pure (instead of a
hybrid) model in order to achieve uniformity in our results.
Moreover, they both function in a blind manner, so no cache
or repository table exchange takes place. We name this ap-
proach HG2 (Hybrid G2/Guess). For our LI implementa-
tion, nodes index the objects of their neighbors (r = 1). To
ensure that the search is equivalent to a flood with T T L = 5,
only peers at depths 1 and 4 process the query. We also en-
sure that no object from the same peer is being discovered
multiple times. Finally, our GIA implementation deploys k
walkers, with each peer forwarding to the neighbor with the
highest out-degree, while the overlay adaptation process is
not simulated. Peers index the documents of their immedi-
ate neighbors. For our GS implementation, we use 5 short-
cuts and rank them by their success rates.

4.1 Basic performance comparison

In our first set of experiments, we use a set of 10,000-
Node random graphs (average degree d = 4) to compare
the nine methods over 5 different environments: A static
one, one with low/high object relocation frequency and one
with low/high peer departure frequency. In the two low-
frequency scenarios, relocation and departures/arrivals oc-
cur about 300 times per run, while in the high-frequency
ones they occur 10 times more often. DRLP and Int/Mod-
BFS forward to 3 neighbors, while k = 7 for s-APS, GIA,
HG2 and Random Walks. Figures 1 and 2 present the re-
sults.

Blind methods show a fairly stable performance between
the static and dynamic settings, since the dynamic opera-
tions do not interfere with the forwarding scheme. Flood-
based schemes discover many objects at a higher cost. Nev-
ertheless, only LI and GS with the pure-flooding scheme
achieve very high accuracy. This happens because of the
small out-degree of our network. We also notice that blind
and flood-based techniques do not get affected by object re-
location, but only by peer joins/leaves. While our relocation
process does not substantially alter anything in those algo-
rithms’ operation, peer arrivals/departures alter the topol-

ogy and the amount of available resources.
Mod/Int-BFS show relatively high accuracy and return

many hits. Their performance is very similar, with the in-
formed method showing marginally better results. For envi-
ronments resembling this setup, Mod-BFS will be preferred,
since its performance is equally high and it is much simpler.
We expect the informed method to perform better in richer
or more specialized environments (like the one described
in [10]), mainly in the number of hits.

Random Walks displays low accuracy (<34%) and finds
less than 0.5 objects on average. Its bandwidth consumption
is quite low (about 15 messages), while its performance is
hardly affected by the dynamic operations. HG2 behaves
similarly, with the exception of producing about 5 more
messages per search. In general, these algorithms exhibit
poor performance and appear very robust to increased net-
work variability. This is reasonable, as walkers are ran-
domly directed with no regard to topology or previous re-
sults.

The s-APS method achieves a success rate of over 75%
in the static run, a number that drops by around 30% in the
highly dynamic settings, but only around 12% in the two
less dynamic ones. The metric that is reasonably affected
is the number of discovered objects, which are almost cut
to a third. This happens because it takes some time for
the learning feature to adapt to the new topology and paths
to discovered objects frequently “disappear”. On the other
hand, it manages to keep its messages almost as low as Ran-
dom Walks’. The scheme is equally affected by relocations
and departures/arrivals, since walkers are directed towards
specific locations which are altered by both types of events.
Nevertheless, it exhibits a good overall performance com-
pared to the non-BFS related schemes, without indexing
other peers’ repositories.

The DRLP algorithm exhibits some interesting charac-
teristics. First, its message production is very low (less than
6 messages per request). Our simulations count the direct
contact of a node (both for DRLP and GS) as one message,
although a link between them might not exist in the over-
lay. Dynamic behavior causes the stored addresses to be-
come more frequently “stale”, thus the initial flooding is
performed more often. This is the reason for the decrease in
its accuracy from 99% in the static case to 77% and 15% in
the highly dynamic ones. DRLP produces the same amount
of messages for its initial search with Modified-BFS, so it
needs many successful requests to amortize this initial cost.
The number of objects it discovers is very small, ranging
from 1.4 to 0.2. If DRLP is forced to use flooding many
times, then the number of hits increases. If it is successful
and produces few messages, then it only finds one replica
per request. Despite this, we notice that it proves very
bandwidth-efficient and flooding is scarcely used. This is
due to the fact that, with many nodes making requests, most

5

Int-BFS LI HG2 RWalks s-APSMod-BFS DRLP GS GIA
0

20

40

60

80

100

Su
cc

es
s

R
at

e(
%

)

High relocation
Low relocation
Static
Low departures
High departures

Int-BFS LI HG2 RWalks s-APSMod-BFS DRLP GS GIA
1

10

100

1000

M
es

sa
ge

s
pe

r R
eq

ue
st

High relocation
Low relocation
Static
Low departures
High departures

Figure 1. Success rate and message production of the methods using a set of 10,000-node random
graphs with average degree d = 4

of them obtain a pointer for every object after a while. So,
even if some node initiates a flood, most of its neighbors
will only forward to one other node. The large number of
requests per run helps DRLP achieve a very low average
message consumption. This scheme seems ideal for rela-
tively static environments and large workloads, with the ex-
ception that the number of hits will be very close to one.
Another important observation is that DRLP is affected far
more by object relocation than by node departures. This is
reasonable if we consider that with departures there still ex-
ist nodes with a valid pointer to an object, whereas object
relocation may make many pointers become stale at once.

The LI scheme proves the most productive in terms of
discovered locations and the most costly in message pro-
duction. It produces one order of magnitude more mes-
sages than the other BFS-related methods but also discov-
ers about 10-20 times more objects, taking advantage of its
index scheme. Its performance is only affected by the dy-
namic joins and leaves, with a decrease of more than 50%

in located objects. The cost of the index updates, even un-
der the more dynamic settings, is negligible compared to
the cost of a search (at most 2% over the total number of
messages). On the other hand, this cost is considerable for
nodes that stay idle (and possibly alter their local reposito-
ries), since it induces traffic without any search involved.

GS shows very high accuracy, since it can always fall
back to the flooding scheme. Nevertheless, when peers
do not have shortcuts or when these fail (this happens
mostly when objects get relocated), message consumption
increases dramatically. On the other hand, similarly to
DRLP, the more flood searches are performed, the more
objects are discovered. Shortcuts are mostly used in the
static and dynamic arrival/departure modes, since 5 short-
cuts proved sufficient for at least one of them to provide an
answer most of the times.

Finally, GIA manages to perform as well as Mod/Int-BFS
but being more bandwidth-efficient. The combination of
one hop indexing and biased walkers achieves a good, ro-

6

Int-BFS LI HG2 RWalks s-APSMod-BFS DRLP GS GIA
0.1

1

10

100

H
its

 p
er

 R
eq

ue
st

High relocation
Low relocation
Static
Low departures
High departures

Figure 2. Hits per query of the methods using the set of 10,000-node random graphs with average
degree d = 4

bust performance at relatively low cost. Only in the high
relocation setting we notice a considerable increase (200%)
in the average message consumption since peers have to re-
fresh their indices frequently.

4.2 Results on more dense graphs

In the next set of simulations we use a random graph
set with an average degree d = 10 to compare the 9 meth-
ods over two different environments: A static one, and
one where both object relocation and peer departures oc-
cur about 600 times per run. DRLP and Int/Mod-BFS for-
ward to 4 neighbors at each step, while k = 12 for s-APS,
Random Walks, HG2, GIA. All other parameters remain the
same. The results for the static case are shown in Table 1.
We also report the percentage of messages per search that
are duplicates and the average distance of the hits in overlay
hops.

Blind forwarding causes a large amount of messages to
be dropped. Informed methods with no direct indices per-
form much better (s-APS, Int-BFS wasting only 0.1% and
0.4% of their messages respectively). Flood-based schemes
also exhibit large hop distances for their hits.

All algorithms produce a larger number of messages per
request in the new graph, taking advantage of the larger
number of connections. DRLP still manages to average less
than 10 messages per request. Random Walks and s-APS
roughly double their hits and increase their accuracy. On
the other hand, Int/Mod-BFS produce 10 times more mes-
sages. HG2 performs in between, producing about 5 times
more messages. LI increases its bandwidth production by
more than an order of magnitude. The overhead due to up-
date messages is even less apparent now, since its search
messages overshadow their effect. GS’s performance in-
creases similarly to LI’s since they use the same underlying
mechanism. Finally, GIA exhibits a very good performance

again, having low message consumption and increased ac-
curacy/hits.

Another interesting metric is the percentage of hits dis-
covered at various distances by the methods (Figure 3). It
shows how many objects each method locates with few or
more messages. Our discussion is based on the static set-
ting. Flood-based schemes discover the vast majority of the
objects T T L hops away, since the available nodes increase
exponentially with distance. LI always locates about 99%
of its objects 4 hops away, and the rest only 1 hop away
from the requesters (since only nodes at these two depths
process the queries), while HG2 discovers about 90% of
the objects with its flooding phase (2 hops away). Ran-
dom Walks discovers almost the same number of objects
per distance, since the query forwarding is done randomly.
GIA also uses walkers and exhibits a similar behavior as
requesters are randomly chosen in our simulations. DRLP
finds almost 70% of its hits using its indices (which also ex-
plains why its hit average is close to one). s-APS displays
a symmetric curve. After a certain distance, possible paths
become too many and the accuracy of the indices drops. Fi-
nally, we notice that GS only discovers about 5% of its hits
using the shortcuts, whereas in the smaller graph the respec-
tive number was 50%. This can be explained by the fact that
the flooding scheme now finds 2 orders of magnitude more
objects than in the previous graph, while shortcuts still find
one object.

Figure 4 shows how object popularity affects the meth-
ods’ accuracy and message production in the dynamic en-
vironment. Popularity decreases as we move to the right
along the x-axis. The first data point represents the accu-
racy/messages of the methods for the top-10%, the second
for objects ranked between 11–20%, etc. This is an im-
portant comparison, because different applications or users
target objects of varying popularity.

7

Table 1. Comparison on 10,000-node random graphs with degree d = 10
Metric ModBFS IntBFS LI HG2 RWALKS s-APS DRLP GS GIA
Success(%) 98.8 99.8 100 70.2 53.4 91.7 100 100 97.0
Messages 875 1233 39710 108.7 43.6 43.0 8.0 2344 35.0
Duplicates(%) 10.3 0.4 18.7 8.3 0.2 0.1 1.8 17.8 0.9
Hits 20.2 32.6 300.0 2.9 1.2 6.1 1.4 18.9 9.5
Hit Distance 4.58 4.61 3.99 1.88 2.78 3.16 1.90 4.60 3.1

Int-BFS LI HG2 RWalks s-APSMod-BFS DRLP GS GIA
0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f H
its

 p
er

 H
op

-c
ou

nt

hop=1
hop=2
hop=3
hop=4
hop=5

Figure 3. Hits per hop distance from the requesters

The three BFS-related methods together with GS exhibit
very high accuracy, with Mod-BFS showing a noticeable
decrease only for the least popular items. Random Walks,
HG2, s-APS and GIA show decreasing accuracy as popu-
larity drops, with GIA and s-APS clearly performing better.
DRLP performs very poorly for the very popular documents
(about 20%), but its accuracy increases as popularity drops.
This can be explained by the fact that less popular objects
receive considerably fewer queries. Therefore, object re-
locations and node departures which affect the algorithm
happen less frequently during requests for such objects. All
algorithms — except DRLP and GS — waste roughly the
same amount of messages per request for each popular-
ity group. DRLP and GS increase their consumption with
a popularity decrease for the sole reason that the cost of
the initial floods is now amortized over a smaller number
of requests. Finally, we noticed that all algorithms (ex-
cept DRLP and GIA that deploy full flooding) discover a
decreasing number of objects as popularity drops, exactly
because this means there exist fewer objects to be located.

In the dynamic environment, we also measure the per-
centage of messages per request sent due to index updates
(for relevant methods only). We found that Int-BFS requires
11%(=131 mesg) of its messages for index updates. The re-
spective numbers for LI, GIA and s-APS are 14.4%(= 2968
mesg), 31.7%(= 14 mesg) and 18.5%(= 8 mesg). Al-
though GIA and s-APS appear to require a larger portion of

updates, they are much more bandwidth-efficient than the
other methods in absolute performance.

Our previous simulations depicted the relative perfor-
mance characteristics of the nine algorithms. To some ex-
tent, that sort of comparison was not direct either because of
the different nature of the methods or because of the single
choice of the various parameters. Since it is impossible to
directly compare the methods for the same parameter val-
ues (e.g., k,T T L), we select simulations on a third set of
10,000-node random graphs (d = 20), where the algorithms
had similar performance in one of two important metrics:
Messages and hits per query. These results were obtained
by experimenting on various values for k, T T L, number of
neighbors to forward and number of requester nodes. The
results are presented in Table 2 and the comparison metric
is typed in boldface. LI is omitted from this table because
its large message and hit production could not be matched
by the other methods.

For similar message consumption, first GIA, then s-APS
discover the most objects (followed by DRLP with about 10
extra messages per search). These three methods also prove
extremely accurate, while the rest of the schemes (either
flood-based or random) do not perform well. For similar
hits per search, again GIA and s-APS stand out above DRLP,
which wastes a few more messages but is perfectly accurate.
From the rest of the methods, only GS is 100% successful,
but exhibits the highest message consumption.

8

Object Popularity

20

40

60

80

100

Su
cc

es
s

R
at

e(
%

)

Int-BFS
LI
Mod-BFS
s-APS
HG2
RWalks
DRLP
GS
GIA

Object Popularity

0.1

1

10

100

1000

M
es

sa
ge

s
pe

r R
eq

ue
st

Int-BFS
LI
Mod-BFS
s-APS
HG2
RWalks
DRLP
GS
GIA

Figure 4. Accuracy and message production vs. object popularity in the dynamic setting

Table 2. Comparison on 10,000-node random graphs with degree d = 20
Metric Mod-BFS Int-BFS HG2 RWALKS s-APS DRLP GS GIA

Success(%) 63.6 67.6 63.5 62.2 93.4 100 90.8 99.9
Messages Messages 73.4 83.0 77.0 72.5 70.6 79.2 77.0 70.0

Hits 1.9 2.3 2.1 2.0 10.7 5.3 1.12 14.9
Success(%) 75.8 77.0 71.9 75.0 80.2 100.0 100.0 92.2

Hits Messages 134.4 117.1 115.1 125.2 31.4 43.0 356.5 32.1
Hits 3.5 3.2 3.1 3.2 3.8 3.4 3.6 3.8

4.3 Increased number of objects

Our previous model was mainly tailored for a system
where peers continuously search for specific objects. The
wide range of replication ratios together with the network
dynamics best enables us to observe the effect of popular-
ity, dynamic behavior and forwarding scheme. We now
consider a more general situation, with a large number of
objects (20,000) and 5,000 requester nodes, each making
2,000 queries. This could be an example of a P2P search
engine application, with users having their own preferences
(changing with time). Table 3 presents our comparison
using three sets of graphs, our original 10,000-node set
(d = 4), a 10,000-node power-law graph set (d = 4.4) and
a Gnutella topology snapshot (d = 4.6). For larger graphs
(simulations up to 50,000 nodes), results are qualitatively
similar.

Compared to the previous results, we clearly notice a
small performance degradation, which is natural if we con-
sider that now more queries are made for sparsely located
objects, while flooding is used more by some of the meth-
ods. Nevertheless, first DRLP, followed by s-APS and GIA
achieve numbers closest to the original ones. With the
power-law topology, although the average out-degree is the
same as with the random graphs, various neighborhoods dif-
fer substantially, since there are few nodes with very high
connectivity. GIA clearly takes advantage of this to in-
crease its discovered objects. Another observation is that
pure flood-based schemes also discover substantially more

objects (compared to the respective runs over the random
topologies with 20,000 objects). HG2 achieves more than
10 times more hits with a 150% increase in accuracy, using
30 times more messages. LI doubles its hits without any
message increase. The rest of the schemes perform very
similarly to the previous simulation. The results for the real
topology resemble those for the power-law graphs if we also
take into account the size increase as well as an increase in
the average out-degree and the number of poorly connected
neighborhoods (possibly due to crawling imperfections). In
general, most methods show increased messages and hits
compared to the random topologies. While they effectively
locate popular objects, they either fail to be as accurate or
greatly increase their message production for the bulk of the
non-popular items.

5 Conclusions

This paper presents a description of current search tech-
niques for unstructured P2P networks, along with a quan-
titative comparison through simulation. Our analyses fo-
cus on the performance metrics of search accuracy, band-
width consumption, discovered objects and behavior under
dynamic operations.

The specifics of the problem play a big role in choosing
the appropriate method. Each scheme has its own goals and
it is important that these goals match the application’s. Im-
portant parameters that could influence our decision include
the primary purpose of the application (e.g., fast discovery,

9

Table 3. Comparison of the nine methods with a 20,000-object pool
Graph Mod-BFS Int-BFS LI HG2 RWALKS s-APS DRLP GS GIA

Success(%) 68.4 69.7 89.9 30.7 29.8 75.2 99.0 89.2 74.4
RANDOM Messages 118.8 115.4 1511.6 24.9 18.6 24.1 7.1 563.5 18.3

Hits 2.3 2.4 37.7 0.5 0.4 2.2 1.2 5.0 3.2
Success(%) 56.8 62.3 93.3 76.7 22.9 75.7 98.3 88.4 85.7

POWER-LAW Messages 73.3 82.0 1473.0 750.3 13.1 15.1 5.0 355.9 19.1
Hits 1.5 1.8 86.1 17.7 0.3 1.9 1.2 3.0 13.9

Success(%) 67.8 76.2 94.7 63.3 33.7 70.1 99.1 83.6 78.8
GNUTELLA Messages 145.6 217.4 1325.1 282.1 24.3 33.1 17.1 886.5 20.9

Hits 2.6 4.4 59.8 5.7 0.5 3.0 2.0 15.3 6.0

many hits, bandwidth-efficient and accurate, easy deploy-
ment, etc), the underlying topology, expected workload, etc.
We offer some general-purpose observations based on our
analysis and simulations, hoping they will prove useful in
evaluating the plethora of different schemes.

a) Blind forwarding is not adequate for both high per-
formance and low message cost. Keeping direct pointers to
more peers (e.g., DRLP, GS) is very efficient in relatively
static environments.

b) Index semantics play an important role: Direct loca-
tion information is effective but sensitive to changes and
more demanding (becomes obsolete if a failure/relocation
occurs, requires update messages). Indirect informa-
tion (e.g., success rates in s-APS, Int-BFS or connectiv-
ity/capacity in GIA) is much more robust but less accurate.

c) Indexing other peers’ repositories is very useful but
must be carefully applied, since it requires updates to keep
the indices up-to-date.

d) Adaptation is a key characteristic through which peers
that have a prolonged stay in the network enhance their
knowledge with time. GS, s-APS and Int-BFS learn from
system searches and improve their performance.

e) In many cases, the simple protocols are the preferred
ones. The simplicity of the mechanisms behind flooding or
random walks make them powerful and easy to implement.
They can be used either by themselves or in combination
with other schemes to improve their performance.

References

[1] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making Gnutella-like P2P Systems Scalable. In
SIGCOMM, 2003.

[2] J. Chu, K. Labonte, and B. Levine. Availability and Locality
Measurements of Peer-to-Peer File Systems. In SPIE, 2002.

[3] E. Cohen, A. Fiat, and H. Kaplan. Associative search in
peer to peer networks: Harnessing latent semantics. In IN-
FOCOM, 2003.

[4] A. Crespo and H. Garcia-Molina. Routing Indices for Peer-
to-Peer Systems. In ICDCS, July 2002.

[5] S. Daswani and A. Fisk. Gnutella UDP Extension for Scal-
able Searches (GUESS) v0.1.

[6] P. Ganesan, Q. Sun, and H. Garcia-Molina. YAPPERS: A
peer-to-peer lookup service over arbitrary topology. In IN-
FOCOM, 2003.

[7] http://www.gnutella.com. Gnutella website.
[8] C. Jin, Q. Chen, and S. Jamin. Inet: Internet Topology

Generator. Technical Report CSE-TR443-00, Department of
EECS, University of Michigan, 2000.

[9] http://www.jxta.org. Project JXTA.
[10] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A

Local Search Mechanism for Peer-to-Peer Networks. In
CIKM, 2002.

[11] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
Replication in Unstructured Peer-to-Peer Networks. In ICS,
2002.

[12] D. Menascé and L. Kanchanapalli. Probabilistic Scalable
P2P Resource Location Services. SIGMETRICS Perf. Eval.
Review, 2002.

[13] http://www.napster.com. Napster website.
[14] http://www.microsoft.com/net. Microsoft .NET.
[15] S. Rhea and J. Kubiatowicz. Probabilistic Location and

Routing. In INFOCOM, 2002.
[16] M. Ripeanu and I. Foster. Mapping the Gnutella Network:

Macroscopic Properties of Large-Scale Peer-to-Peer Sys-
tems. In IPTPS, 2002.

[17] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy.
An Analysis of Internet Content Delivery Systems. In OSDI,
2002.

[18] S. Saroiu, P. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. Technical Report
UW-CSE-01-06-02, Un. of Washington, 2001.

[19] S. Sen and J. Wang. Analyzing peer-to-peer traffic across
large networks. In SIGCOMM Internet Measurement Work-
shop, 2002.

[20] C. Shirky. What Is P2P...And What Isn’t. OpenP2P.com,
2000.

[21] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient Con-
tent Location Using Interest-Based Locality in Peer-to-Peer
Systems. In INFOCOM, 2003.

[22] M. Stokes. Gnutella2 Specifications Part One:
http://www.gnutella2.com/gnutella2 search.htm.

[23] D. Tsoumakos and N. Roussopoulos. Adaptive Probabilistic
Search for Peer-to-Peer Networks. In 3rd IEEE Intl Confer-
ence on P2P Computing, 2003.

[24] B. Yang and H. Garcia-Molina. Improving Search in Peer-
to-Peer Networks. In ICDCS, 2002.

[25] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model
an internetwork. In Infocom, 1996.

10

