
Cluster Comput (2010) 13: 257–276
DOI 10.1007/s10586-010-0136-5

Distributing and searching concept hierarchies: an adaptive
DHT-based system

Athanasia Asiki · Dimitrios Tsoumakos ·
Nectarios Koziris

Received: 10 November 2009 / Accepted: 18 March 2010 / Published online: 8 April 2010
© Springer Science+Business Media, LLC 2010

Abstract Concept hierarchies greatly help in the organiza-
tion and reuse of information and are widely used in a vari-
ety of information systems applications. In this paper, we de-
scribe a method for efficiently storing and querying data or-
ganized into concept hierarchies and dispersed over a DHT.
In our method, peers individually decide on the level of in-
dexing according to the granularity of the incoming queries.
Roll-up and drill-down operations are performed on a per-
node basis in order to minimize the required bandwidth for
answering queries on variable aggregation levels. We moti-
vate our approach by applying it on a large-scale Grid sys-
tem: Specifically, we apply our fully decentralized scheme
that creates, queries and updates large volumes of hierar-
chical data on-line and replace the traditional centralized
and strictly indexed information systems. Our extensive ex-
perimental results support this argument on many diverse
configurations: Our system proves very efficient in skewed
workloads, both over single and multiple hierarchy levels at
the same time. It adapts to sudden changes in popularity and
effectively stores and updates large amounts of data at very
low cost.

This work was partly supported by the European Commission in
terms of the GREDIA FP6 IST Project (FP6-34363).

A. Asiki (�) · D. Tsoumakos · N. Koziris
Computing Systems Laboratory, School of Electrical and
Computer Engineering, National Technical University of Athens,
Athens, Greece
e-mail: nasia@cslab.ece.ntua.gr

D. Tsoumakos
e-mail: dtsouma@cslab.ece.ntua.gr

N. Koziris
e-mail: nkoziris@cslab.ece.ntua.gr

Keywords Distributed hash table · Concept hierarchies ·
Adaptive indexing · Grid information system

1 Introduction

A concept hierarchy (or taxonomy) defines a sequence of
mappings from more general to lower-level concepts. For
example, Fig. 1 shows a simple hierarchy for the Virtual
Organization concept, where

VO< Category< Region< Site

and one for time where a partial order is defined. Concept
hierarchies are important because they allow the structur-
ing of information into categories, thus enabling its search
and reuse. Specifically, users may view data at different lev-
els of a dimension hierarchy: With the roll-up operation we
climb up to a more summarized level of the hierarchy, while
a drill-down defines the opposite operation (i.e., navigating
to lower levels of the hierarchy with increased detail). The
drilling paths are usually defined by the hierarchies within
the dimensions. The mappings of a concept hierarchy are
usually provided by application or domain experts.

Works in the field of data-warehousing (e.g., [10, 18],
etc.) utilize hierarchies across the dimensions of a data cube
but these present strictly centralized solutions. In the area
of distributed computing, while there has been considerable
work in sharing simple relational data using both structured
and unstructured overlays (e.g., [13, 14, 17]), no special con-
sideration has been given to data supporting hierarchies. We
investigate the problem of indexing and querying such data
in a way that preserves the semantics of the hierarchies and
is efficient in retrieving the requested values in a fully dis-
tributed environment.

To motivate our approach, we describe how it can be
applied in order to function as a distributed and efficiently

mailto:nasia@cslab.ece.ntua.gr
mailto:dtsouma@cslab.ece.ntua.gr
mailto:nkoziris@cslab.ece.ntua.gr

258 Cluster Comput (2010) 13: 257–276

Fig. 1 A concept hierarchy for
the VO and Time (lattice)
dimensions

operational grid information system. Grid computing allows
for coordinated resource sharing and problem solving in dy-
namic virtual organizations (VOs). A VO is a group of users
from multiple institutions who collaborate to achieve a spe-
cific goal. The goal of grid computing is to provide a net-
work of systems which, acting like a single supercomputer,
offers resources that are easily accessible. In order for jobs
to be adequately served by the most appropriate resources,
the information system stores all needed information about
the characteristics of the available resources over time.

There exist a number of systems that accomplish the tasks
of an information system (e.g., [3, 5], etc.). Nevertheless,
they either feature a central information repository or a hi-
erarchy of aggregation sites that introduce both scalability
(single points of failure) and performance (processing bur-
den on a single site) issues. Work in the area of distributed
databases offers a variety of systems which can be used to
disseminate and query this information. Nevertheless, these
schemes cannot be used to maintain the semantics of the hi-
erarchy and efficiently retrieve views of the data at different
granularities. This is very important for applications such as
a large scale information system, as queries naturally tar-
get different levels of detail: Historic queries usually require
grouping by the highest hierarchy levels (e.g., group-by VO
or group-by Year), whereas online queries are naturally di-
rected towards more detailed levels (e.g., group-by Site or
by Day).

Let us assume that the system’s database contains a lo-
cation dimension that relates to the VO location informa-
tion (see Fig. 1). Monitoring information is described by at-
tributes (facts) such as the number of running jobs, number
of waiting jobs, available storage space, total storage space,
etc. Common accounting queries could be “Give me the av-
erage CPU time” or “Give me the minimum available space
in Gbytes”, presented to the user grouped by a VO value.

In this paper, we present a system that efficiently stores,
queries and updates data organized in concept hierarchies.
We choose the DHT as a reliable substrate over which we
store, index and query our data, thus eliminating all pos-
sible bottlenecks created by the hierarchical or centralized
approaches mentioned before. Data producers individually
insert data to the distributed information system. Queries
are still answered, while incremental updates are efficiently
processed. Our solution takes the query granularities into ac-
count, adjusting the indexing structure to favor performance.
Second, we intend to provide a system that will preserve

all hierarchy-specific information. In our technique, a tree-
like data structure is used to store data and maintain indices
to related keys, enabling us to respond to more complex,
hierarchy-based queries such as: “Which sites correspond
to VO ‘Biomed’ ” or “What category does region ‘Asi-
aPacific’ belong to”. We can summarize the contributions of
this paper in the following points:

– We present a complete storage, indexing and query
processing system for hierarchical data. This system has
many desirable properties: It adapts the granularity of its
indexing according to incoming requests; Performs effi-
cient and online incremental updates; Maintains data in a
fault-tolerant and fully distributed environment.

– We motivate the usefulness of this scheme by customizing
it to serve as a high-performance information system. We
show how our method outperforms traditional approaches
by eliminating offline processing and other performance
bottlenecks.

– We present a thorough performance analysis in order to
identify the behavior of our scheme under a large range
of work and data loads.

The rest of this paper is organized as follows: The next
Section summarizes related work both in exploiting hierar-
chies as well as existing information systems. Section 3 de-
fines the problem and presents our solution in detail, while
Sect. 4 refers to the case study of the information system.
Section 5 analyzes some aspects considering the functional-
ity and optimization of our system. In Sect. 6 the experimen-
tal setup is described and the system is evaluated based on
the collected results, while we conclude our work in Sect. 7.

2 Related work

There has been significant work in the area of databases over
P2P networks. PIER [13] proposes a distributed architecture
for relational databases supporting operators such as join
and aggregation of stored tuples. A DHT-based overlay is
used for query routing. The Chatty Web [7] considers P2P
systems that share (semi)-structured information but deals
with the degradation, in terms of syntax and semantics, of a
query propagated along a network path. In [20], the authors
propose optimization techniques for query reformulation in
P2P database systems.

In GrouPeer [14], SPJ queries are sent over an un-
structured overlay in order to discover peers with similar
schemas. Peers are gradually clustered according to their
schema similarity. PeerDB [17] also features relational data
sharing without schema knowledge. Query matching and
rewriting is based on keywords provided by the users. Grid-
Vine [8], and pSearch [19] are based on structured P2P over-
lays. GridVine hashes and indexes RDF data and schemas,

Cluster Comput (2010) 13: 257–276 259

and pSearch represents documents as well as queries as se-
mantic vectors. All these approaches offer significant and
efficient solutions to the problem of sharing structured and
heterogeneous data over P2P networks. Nevertheless, they
do not deal with the special case of hierarchies over multi-
dimensional datasets.

An interesting method for representing hierarchical data
is presented in [15]. The method is applied on unstructured
networks containing XML documents in order to favor the
routing of path queries. Each XML document is represented
by an unordered label tree and bloom filters are used to sum-
marize it.

Several indexing schemes have been presented for storing
data cubes (e.g., [16, 21]). However, only few support both
aggregate queries and hierarchies. In [18], hierarchies are
exploited to enable faster computation of the possible views
and a more compact representation of the data cube. The
Hierarchical Dwarf contains views of the data cube corre-
sponding to a combination of the hierarchy levels. The other
approach is the DC-Tree [10]. In this work, the attributes of
a dimension are partially ordered with respect to the valid
hierarchy schema for each dimension. The DC-tree stores
one concept hierarchy per dimension and assigns an ID to
every attribute value of a data record that is inserted. These
approaches are very efficient in answering both point and
aggregate queries over various data granularities but do so
in a strictly centralized and controlled environment.

There exist multiple systems and architectures proposed
to implement the information system component. The most
common is the Globus Monitoring and Discovery Service
(MDS) [3]. A Grid Index Information Service (GIIS) pro-
vides an aggregate directory of lower level data stored at
multiple Grid Resource Information Services (GRISs). The
hierarchical structure that can be composed between GIISs
enables complete information retrieval by querying the top
level GIIS. However, MDS has shown not to be a solution
for large-scale production because it does not scale: Multiple
client requests quickly lead to an overload of the top level
GIIS [22]. Another schema used especially for accounting
and publication of user-level information is the Relational
Grid Monitoring and Discovery Service (R-GMA) [5], which
supports complex type of queries allowed by relational data-
bases. R-GMA presents information as a single virtual data-
base containing a set of virtual tables, nevertheless the bulk
of data need be transferred offline to a centralized database
after a period of time, with all the performance drawbacks
that this entails. The major drawback in all these methods is
the fact that none of these architectures scale as the number
of data collectors increase [22]. Moreover, they all assume
an offline (or periodic at best) data migration phase to a more
central location where global information can be available.
In contrast, we propose a completely decentralized system
where all data are continuously available and indexed at the
requested granularities for fast retrieval.

3 An adaptive indexing scheme to support concept
hierarchies

In this paper, we describe a system for processing bulk hier-
archical data in a DHT-based overlay. Our goal is to enable
efficient querying while preserving the hierarchy semantics.
In addition to the fact that the DHT substrate can trans-
parently handle node churn, replication, reliable distributed
storage, etc., our technique offers adaptive indexing accord-
ing to the granularity of the incoming queries and online
updating with low cost and no downtime.

3.1 Notation

Let the data items stored in the system be in the form of
tuples containing values for all levels �i of a concept hierar-
chy with L levels. They also contain a numerical fact of in-
terest (e.g., CPU Time, Available Memory, etc.) or
the location of actual data. We call the uppermost level of
the hierarchy (�0) root level and its value root key. We de-
fine that �a < �b , where (a, b ∈ [0,L − 1]), if and only if
�a is higher in the concept hierarchy (namely closer to �0)
than �b . The values of the hierarchy levels are organized in
tree structures, one per root key. Without loss of generality,
we assume that each value of �i has at most one parent in
�i−1. During the insertion of a tuple, a level of its hierarchy
is chosen and its hashed value serves as its key in the under-
lying DHT overlay. We refer to this level as pivot level and
to its value as pivot key. Finally, the highest and the lowest
pivot levels of the hierarchy for a specific root key are called
MinPivotLevel and MaxPivotLevel respectively.

3.2 Data insertion

The key for each tuple is the result of a hash function ap-
plied on the value of the selected pivot level. Tuples are as-
signed to the node with ID numerically closest to the gener-
ated keys, according to the standard DHT operations.

In our system, both initial insertions as well as incremen-
tal updates are handled in a unified manner. We introduce a
completely distributed catalogue containing all the root keys
and their corresponding pivot keys. Each root key is stored
in the node responsible for it along with the list of pivot keys
that have been already inserted. The root key is also aware
of the MaxPivotLevel used during tuple insertion containing
its value.

The procedure followed during the tuple insertion is as
follows: The root key for this tuple is generated and a lookup
for this key takes place in the DHT overlay. If the root key
exists, the tuple ends up in the node responsible for it. We
consider an insertion to be the procedure followed in case
that the root key does not already exist in the overlay. Oth-
erwise, the update procedure is followed (see Sect. 3.5).

260 Cluster Comput (2010) 13: 257–276

Fig. 2 (a) Insertion of a new tuple with its root key not already stored in the overlay. (b) Lookup using soft-state indices for a value belonging to
a non-pivot level. (c) Updates for an already existing and a non-existing pivot key

In case of an insertion, the tuple or the group of tuples
with the same root key arrive at the node responsible for it.
The node selects a pivot level (either a random or a prede-
fined one) and the pivot key(s) of the tuple(s) is (are) calcu-
lated for the appropriate pivot level. Each new pivot key is
added to the list of pivot keys. Finally, each tuple is stored
in the node with the ID closest to its pivot key.

Each peer organizes the tuples in trees that preserve their
hierarchical nature. As a consequence, each distinct value of
the pivot level corresponds to a tree that reveals part of the
hierarchy. When a new tuple arrives at the node responsible
for it, the node searches its keys. If no tuples for this pivot
key have been stored, a new tree with a single branch is cre-
ated. In the opposite case, a new branch is added below the
value of the pivot level with the new values of the remaining
levels.

An example of insertion is shown in Fig. 2(a). A graphic
convention is that solid lines represent existing indices,
while dotted lines correspond to logical steps followed dur-
ing the described procedure. Let us assume that tuples fol-
low the VO hierarchy depicted in Fig. 1 with �2 (Region) as
the globally defined pivot level for initial insertions. A tuple
with root key ‘esr’ is inserted in the overlay. Since the spe-
cific root key does not already exist, a new index is created
in the corresponding node. Afterwards, Region is selected
as pivot level and the tuple is forwarded to the node respon-
sible for this key, which creates a new tree with only one
branch for this tuple.

3.3 Data lookup and soft-state indices

Queries concerning the pivot level are exact match queries
and can be answered by the DHT lookup operation. Queries
for any other level cannot be resolved unless flooded across
the DHT. Towards the exploitation of the knowledge ac-
quired by flooded queries, we introduce soft-state bidirec-
tional indices to our scheme. When a node answers a flooded
query, it checks whether a roll-up or drill-down is necessary.

If this is not the case, the query initiator starts the procedure
of creating an index, as soon as it receives the complete an-
swer. It inserts the result of hashing the requested value in
the DHT along with IDs of nodes having the actual tuples.
The tuple holders also mark the specific value as indexed.
The next time that a query for this key is initiated, the lookup
operation locates the node holding the index, finds out the
IDs of nodes with relevant tuples and retrieves them.

The created indices are soft-state, in order to minimize
the redundant information. This means that they expire af-
ter a predefined period of time (Time-to-Live or TTL). Each
time that an existing index is used, its TTL is renewed. This
constraint ensures that changes in the system (e.g., data lo-
cation, node departures, etc.) will not result in stale indices,
affecting the validity of the lookup mechanism. Moreover,
after the number of indices has reached a limit Imax, the
creation of a new index results in the deletion of the old-
est one(s). Overall, the system tends to preserve the most
“useful” indices, namely the ones directed towards the most
frequently queried data items.

The nodes with actual tuples of the indexed value need
to know the existence of an index, in order to erase it af-
ter a re-indexing operation. The bidirectionality of the in-
dices is introduced only to ensure data consistency, despite
of them being soft-state. During re-indexing operations, the
locations of stored tuples change and indices correlated to
these tuples need either to be updated or erased, preventing
the existence of stale indices. Our choice is to erase them,
so as to avoid increasing the complexity of the system. De-
tailed information for an existing index is not essential for
the node, where the tuples are stored. A simple mark for
each indexed value is adequate in order to erase its index,
if it is needed. In this case, some redundant operations for
erasing expired indices may occur. If there are no memory
restrictions and local processing is preferable to bandwidth
consumption, indexed values can be marked with a time-
stamp. Every lookup for an indexed value renews the TTL

Cluster Comput (2010) 13: 257–276 261

in both sides of the index and only valid indices are erased
during re-indexing operations.

In the example of Fig. 2(b), a query for ‘SEE’ is re-
solved directly by the lookup operation of the DHT protocol.
Lookups for values of the root level are processed utiliz-
ing the indices created during insertions. Nevertheless, any
query for any level other than the pivot level or the root level
ends up with no results. For example, a query for data items
described by ‘Tier2’ does not contact the two nodes with
the corresponding trees before the creation of the index. The
next step is the flooding of the query and the nodes storing
the keys of ‘Spain’ and of ‘Germany’ are reached. The query
initiator, which is now aware of the existing pivot keys, cre-
ates indices storing the information about these pivot keys
to the node responsible for the value ‘Tier2’. This node now
has an index pointing to the node ‘Spain’ and another to
node ‘Germany’. In the future, queries for ‘Tier2’ will be
answered without flooding, utilizing the created soft-state
indices. As shown analytically in Fig. 2(b), a query for the
Category ‘Tier2’, after the creation of the indices, reaches
the node responsible for this key, which in turn forwards the
query to all relative nodes directly. The nodes storing the
trees with the queried value return only the relevant tuple(s).

Since root indices are created during the insertion of tu-
ples, an optimization for the flooding scheme can be applied
to reduce the number of messages required for flooding, tak-
ing advantage of their existence. When a flooded query is
forwarded from a node to its subsequent neighbor in the
overlay, the covered range of IDs of the visited node (hence
CoveredIdRange) is registered. According to the described
approach of storing the data, if the query regards a value be-
longing to a level below the pivot level, the corresponding
tuples can be retrieved by only one node. Therefore, the for-
warding of the flooded query terminates, as soon as the node
with the queried value is contacted. In case of a query for a
value above its pivot level, the forwarding of the query can-
not be terminated when the first contacted node responsible
with a tree containing this value is found. Nevertheless, this
node can answer to the initial node with its corresponding
tuples and it can forward the query to the node responsible
for the root key. Upon the delivery of the flooded query to
the node with the root index, the node examines the Covere-
dIdRange of all visited nodes and sends the query in paral-
lel only to the nodes storing the pivot keys, that are candi-
dates to answer the flooded query and are not included in the
CoveredIdRange. According to this strategy, the information
stored in the root key is utilized and the visiting of all nodes
may be avoided during flooding. For example, let us sup-
pose data tuples organized as shown in Fig. 2(a). A query for
‘Tier2’ is flooded and thus it can be forwarded from a node
to its subsequent neighbor clockwise. In this case, the node
with the pivot key ‘Germany’ is reached at first. The specific
node forwards the query to the node responsible for the root

index as implied by the described optimization. Eventually,
the node with the root index sends the flooding query only to
the node responsible for the non-visited pivot key ‘Spain’.

3.4 Re-indexing operation

Our goal is the described system to dynamically adapt on
a per node basis to online queries, so as to increase the ra-
tio of the non-flooded queries. In order to achieve this goal,
we introduce two re-indexing operations regarding the se-
lection of pivot level: roll-up towards more general levels of
the concept hierarchy and drill-down to levels lower than the
pivot level.

The idea behind individual re-indexing of stored tuples
is based on the fact that each node has a global view of the
queries regarding each level �i < pivotlevel, but only a par-
tial view of the queries for each level �i > pivotlevel. There-
fore, it has sufficient information to decide if a drill-down
will favor the increase of the exact-match queries for its val-
ues. On the other hand, a node has to cooperate with other
peers that store a value of a level �i < pivotlevel in order to
decide if this level is more appropriate.

The re-indexing of the data tuples (through a choice of a
different pivot level) is performed on a per-tree basis, requir-
ing no global coordination. Each node collects information
using the incoming queries and finds out if the pivot level
of a tree remains its most popular level. Otherwise, the node
proceeds with the re-indexing of the tuples of this tree. The
popularity of the levels of a tree is estimated based on their
average rates of incoming queries (hence InQ) over a time
period. A node maintains one record per tree with these rates
during a restricted time-frame W. This parameter should be
properly selected to perceive variations of query distribu-
tions and, at the same time, stay immune to instant surges in
load.

In more detail, the mechanism works as follows: A node
may check if a re-indexing is required based on the objective
to achieve. The implemented strategy implies that a node
decides whether a roll-up or drill-down is required when it
answers a flooded query or when a number of queries for
indexed values have been received. While the main objec-
tive is the increase of the queries answered without flooding,
this strategy targets to the increase of exact match queries as
well.

The number of queries for indexed values triggering a
node to examine a possible re-index may vary and has an
impact to the adaptiveness of the system. A small value in-
dicates that the potential of re-indexing is examined more
often and thus more re-indexing operations may take place.
Nevertheless, if a decision has erroneously been made, it can
be easily corrected. However, during re-indexing operations,
existing indices are deleted and this may have a negative im-
pact on the system. In the opposite case, the system tends to

262 Cluster Comput (2010) 13: 257–276

depend more on the effectiveness of the indices. We have ob-
served that re-indexing operations are necessary, when pop-
ular values belong to levels with several distinct values. In-
dices perform better for higher levels with less values, since
there is a high probability for repeated utilization of an in-
dex.

A node decides if a re-indexing operation will favor the
increase of non-flooded queries based on the ‘popularity’
of each level according to the procedure described in basic
steps in Algorithm 1. A thr parameter is used to indicate if
a re-indexing operation is required. The following criterion
defines if a re-indexing to a level �q is allowed:

InQ�q
> thr ×

i=L−1∑

i=0

InQ�i
, �q �= pivotlevel, thr ∈ [0,1].

In the described algorithm, two possible cases are consid-
ered to indicate the necessity of a re-indexing operation: The
queried level �q lies lower in the hierarchy than the pivot

Algorithm 1 Decision Algorithm in the node answering a
query

pivotlevel: current pivot level
�q : the queried level of the flooded or indexed value
NotPivotKey: the flooded or indexed value
InQtot: rate of incoming queries for the tree with
NotPivotKey
InQini: initial minimum rate to allow re-index operations
InQlpop : rate of incoming queries for the most popular
level
action: the decided action
�pop ⇐ FindMostPopularLevel
if �q > pivotlevel then

if (InQtot > InQini) AND (�pop > pivotlevel) AND
(InQ�pop > thr × InQtot) then

Drill-down to lpop

action ⇐ NoAction
else if NotPivotKey is NOT indexed then

action ⇐ CreateIndex
else

action ⇐ NoAction
end if

else if �q < pivotlevel then
if (InQtot > InQini) AND (�q = �pop) AND
(InQ�q

> thr × InQtot) then
action ⇐ PositiveToRollup

else if NotPivotKey is NOT indexed then
action ⇐ CreateIndex

else
action ⇐ NoAction

end if
end if

level of the tree (�q > pivotlevel). Only one tree stores the
values of a level below the pivot level. Therefore, the spe-
cific node is aware of the exact popularity of these values
and feels ‘confident’ to decide if a drill-down is needed. If
the most popular level �pop of the tree lies below the pivot
level and the defined criterion is valid for its InQ, then a
drill-down to this level is decided. After the decision for
drill-down is made, the node finds all the distinct values
of the new pivot level and hashes them one by one, send-
ing the new groups of tuples to the corresponding nodes.
The already gathered statistic information is sent along with
one randomly selected group, in order to maintain informa-
tion about the query distribution for the values contained in
the drilled-down tree within W. Any existing indices for any
value of this tree are removed. If a drill-down is not needed,
the node includes in its answer to the initiator the fact that
the queried level is lower than the pivot level, hence it can
carry on with the creation of the soft-state index and expe-
dite the process.

The queried level �q lies higher that the pivot level of
the tree (�q < pivotlevel). In this case, there are more than
one trees with this value needed to participate in a possible
roll-up to this level. Otherwise, lookups for this value will
not return complete results. If the threshold criterion is sat-
isfied for the �q , then the node is positive to the potential of
adopting this level as pivot level for this tree. This step is in-
dicative of an imbalance and the query initiator is informed
about this. The query initiator decides for a re-indexing op-
eration according to the procedure described in Algorithm 2.
If the query initiator is aware of at least one node willing to

Algorithm 2 Decision Algorithm in the querying node
lq : the queried level of the flooded or indexed value
NotPivotKey: the flooded or indexed value
action: the required action by involved nodes {action =
PositiveToRollup if at least one node is positive to roll-
up}
if action = PositiveToRollup then

Gather statistic information
Calculate InQ for each level
�pop ⇐ FindMostPopularLevel
MaxPivotLevel ⇐ FindMaxPivotLevel
if (�q = �pop) AND (InQ�pop > thr × InQtot) then

Roll-up to lpop

else if (�pop ≥ MaxPivotLevel) AND (InQ�pop > thr ×
InQtot) then

Group-Drill-down to �pop

else if NotPivotKey is NOT indexed then
Create Index for NotPivotKey

end if
else if action = CreateIndex then

Create Index for NotPivotKey
end if

Cluster Comput (2010) 13: 257–276 263

roll-up to this level, it starts a procedure to confirm the local
intuition by using statistic information provided by all the
nodes having answered the query. After receiving the tuples
containing the number of InQ per level, it calculates the total
value of InQ per level.

The calculation of the total rate of InQ per level is
not straightforward. Queries concerning an �i for any i ≥
pivotlevel end up only in one node and are thus counted
once for statistic purposes. The same property is not valid for
queries requiring values of higher levels than the pivot level.
These queries reach more than one node and are counted in
all of them. During the gathering of statistic information for
roll-up decisions, the problem of multiple counting of such
queries in the calculation of the rate for each level needs
to be solved. The complexity in the calculation of the over-
all rate of InQ increases since more than one pivot levels
may exist for the involved trees in the re-indexing proce-
dure. For example, let us assume that the state of trees with
the ‘biomed’ as their root key is the one shown in Fig. 3(b).
In this case, the value of InQ for ‘Tier2’ is sent twice by
the nodes with the trees of ‘Tier2’. To avoid this situation, a
path containing the values for all levels in [0,pivotlevel] is
sent along the statistic information to the querying node, so
as to make the correct decision. Through this procedure, the
querying node is also informed for the MinPivotLevel and
MaxPivotLevel of all existing trees containing the queried
value (hence NotPivotKey).

If the InQ of �q is more than thr of the total number of
InQ, then the initiator messages the involved nodes to roll-
up the corresponding trees to this level by re-inserting their
tuples. If the re-indexing criterion for lq is not fulfilled and
since statistic information has been collected, the querying
node examines if a drill-down to a level �i ≥ MaxPivotLevel
(the equality is for the case that all the involved trees do
not have the same pivot level but some of them are already
in the MaxPivotLevel) is dictated by the collected statistics.
Our intention is to take advantage of the fact that the query-
ing node has now a more global view of the InQ per level.
It is possible to find a level �i ≥ MaxPivotLevel to be the
most popular but this tendency not to appear in the partial
views of the involved nodes. In this case, the query initia-
tor informs the involved nodes that a drill-down to this level
is needed. We call this procedure Group-Drill-down,
since more than one nodes participate in the drill-down. All
the trees with the queried value in �q drill-down to the new
pivot level. If the new pivot level is equal to the MaxPiv-
otLevel, the trees already in the MaxPivotLevel do not per-
form any action. If a re-indexing operation is not needed, no
action is taken other than the creation of a soft-state index
for this value.

Lock mechanisms are activated during the time that a re-
indexing decision is being made. The purpose of this locking
is to avoid examining the same re-indexing possibility mul-
tiple times for concurrent lookups on specific trees. Locks

Fig. 3 Examples of drill-down and roll-up operations

are revoked after the completion of an ongoing procedure
or after a short period of time. The steps described in Al-
gorithms 1 and 2 are performed, only if the corresponding
locks are inactive. Otherwise the described procedures are
not performed and only the query is answered.

Examples of the described re-indexing operations are ap-
plied in the trees of Fig. 3 with root value ‘biomed’. The two
trees of Fig. 3(a) are stored in different nodes of the DHT
overlay and are considered the initial state before any re-
indexing operation. We suppose that a query for ‘Spain’ trig-
gers a drill-down operation. The result is shown in Fig. 3(b).
On the other hand, a query for ‘biomed’ may result in a roll-
up to the root level depicted in Fig. 3(c) or a Group-Drill-
down to the Region level depending on the total InQ per
level. The Group-Drill-down results to the trees of Fig. 3(d)

264 Cluster Comput (2010) 13: 257–276

and differs from the simple drill-down, since all the trees
drill-down to �2.

3.5 Updates

An update is the procedure followed during the insertion of
a tuple, when its root key already exists in the overlay. The
update procedure comprises of two consecutive phases: the
insertion of the tuple and the updating of any existing indices
for the values of the tuple. The insertion phase presents mi-
nor differences compared to the insert procedure.

The updates of the existing datasets is a more compli-
cated procedure. During the insertion of new tuples, it is
critical to select the correct pivot level so as to ensure the
correctness of the lookup operations. The selection of the
pivot level is not simple, since the pivot levels of the stored
trees of a specific root key may vary due to performed re-
indexing operations.

The following assumptions are made:

– If a new tuple contains a pivot key, then this key should be
used during insertion. Otherwise, lookups for this value
will return only the tuples, that existed before this opera-
tion.

– Even if none of the values belonging to the specific tu-
ple have been used as pivot keys, they may have already
been stored in the network. The selection of such a value
as pivot key would result in the discovery of the new tu-
ple only in a later search. Therefore, we consider that the
pivot level be equal to the MaxPivotLevel in this case.
Re-indexing operations would take over to find the most
appropriate pivot level of this tuple.

The difficulty of updates increases because the information
about the stored pivot values and the MaxPivotLevel is dis-
tributed over the overlay. We have implemented a distributed
catalogue by creating an index among the node responsible
for the root key and the nodes with the pivot keys, namely
a record with the root key and the corresponding pivot keys.
This enhancement allows online updates with the system
continuing to efficiently serve requests of the users.

During a new tuple insertion, a lookup operation for the
root key is performed. The responsible node is contacted and
it finds out if any value of the tuple corresponds to a pivot
key. In this case, the tuple is stored to the responsible node
for the pivot key and its new values below the pivot level
are added as a new branch to the existing tree. In the oppo-
site case, the hashed value of the MaxPivotLevel is consid-
ered as the pivot key of this tuple during its insertion in the
overlay. The existence of trees with equal values above the
pivot level is not excluded by this assumption and neither is
the existence of corresponding indices. These indices should
be updated so as indexed lookups to return complete an-
swers. The node storing the tuple initiates lookups for each

�i , where 0 < �i < pivotlevel and the corresponding indices
are informed about the new tuple.

Examples for the possible cases during an update are
depicted in Fig. 2(c). The node holding the index for the
root key ‘biomed’ concludes that the none value of the tuple
‘(biomed, Tier2, Sweden, SWsite1)’ corresponds to an exist-
ing pivot key. Moreover, it is aware that the MaxPivotLevel
for its trees is the Region and thus the tuple is inserted
with ‘Sweden’ as its pivot key. The new pivot key is also
added in the list of pivot keys for this root key. However,
the value ‘Tier2’ is already indexed. During lookup for the
value ‘Tier2’ according the update procedure, the responsi-
ble node is discovered and a new index among this node and
the node with actual data is created. During the update for
tuple ‘(biomed, Tier2, Spain, SPsite2)’, the node with ‘bio-
med’ index proceeds in the insertion of tuple with ‘Spain’
as pivot key, resulting to the creation of a new branch in the
existing tree. The indexed value ‘Tier2’ is not affected and
no further action is taken.

4 Case study: grid information services

A motivating scenario for the usefulness of the proposed
system can be found in the collection of information pro-
duced by information services in Grid environments. Grid
computing resources and services advertise a large amount
of data, which are used by various users across multiple
administrative domains. This information is not intended
only for event handling, as in traditional monitoring systems
for networks and cluster computing. The produced informa-
tion by various mechanisms such as cluster monitors (Gan-
glia [2], Hawkey [4]), services (GRAM, RLS [6]), queuing
systems, etc., is organized and provided to various applica-
tions, such as accounting systems, schedulers, portals, etc.
For this reason, the key to the design of Grid Information
Services is to identify the information that is required and to
determine how to best make it available.

In todays Grid Monitoring Architectures (MDS, R-
GMA), data concerning the state of the infrastructure are
collected by a combination of various monitoring systems
on a resource base and organized by information produc-
ers (or providers). In the previous generation of monitoring
architectures, the information producers were organized in
a hierarchical structure and published their data, which fi-
nally were collected and stored in a central LDAP-based
database. In more modern approaches, the information pro-
ducers are known to the system by subscribing themselves
to an Index service (MDS) or a Registry (R-GMA). Infor-
mation consumers ask this structure for the location of the
producers and contact all of them in order to acquire the
needed data. Moreover, various aggregator services exist

Cluster Comput (2010) 13: 257–276 265

Fig. 4 An information system according to the distributedCP model

that collect information (via subscription, polling or exe-
cution) from information producers using a common con-
figuration mechanism to specify the type of data and the
collected information. For example, VOs maintain such ser-
vices to collect VO-wide resource information by collecting
data from the Information servers running at many sites.
Due to the large volume of data and their usefulness to vari-
ous services, we strongly believe that a solution for efficient
storage and indexing of the produced information, which dy-
namically adapts to requests of users or services, contributes
to the operability and the performance of a Grid infrastruc-
ture.

The architectures of such information systems can be di-
vided into the following structural categories according to
the existing technologies and real paradigms implemented
in existing infrastructures.

Centralized solution: The produced information by vari-
ous monitoring tools is published in a central database. The
users query this database in order to retrieve the information
of their interest. A usual technique is to replicate the data-
base or maintain such a database per VO, so as to lighten
the heavy load in flash crowd situations and to avoid single
point of failures.

Distributed solution: A producer–consumer model is
implemented in a distributed manner resulting in the im-
plementation of a virtual database. The producers register
themselves within the Registry and describe the type and
structure of the provided information. The consumers con-
tact the Registry to find the locations of the producers and
afterwards contact them directly to obtain the relevant data,
as shown in Fig. 4 (distributedCP model).

Our system is a complete solution for the organization
and storage of such information. The proposed scheme can
be integrated in a Grid environment providing a fully de-
centralized solution. In this architecture, the nodes hosting
the information producers and used for information-related
purposes are organized in a DHT-based overlay, as shown
in Fig. 5. The routing of messages among these resources
is performed according to the DHT protocol and no cen-
tralized structures are required. The P2P overlay introduces

Fig. 5 The proposed architecture for the information system

a scalable solution, while data and query load balancing is
achieved. A concept hierarchy is defined for the various lev-
els of aggregation that characterize the produced data. Each
numerical fact is described by the corresponding concept hi-
erarchy. No off-line collection and processing of data is re-
quired, since online updates are supported. The re-indexing
mechanism enables the summarization of data according to
the incoming queries. Moreover, the Registry or Index ser-
vice with the locations of service instances is implemented
in a distributed manner. While in existing distributed ap-
proaches a consumer queries a central point to find all the
relative producers, this procedure is eliminated in our self-
organized system. The data are dynamically aggregated and
stored in a distributed manner according to the preferences
of the users achieving reduction of processing and commu-
nication cost.

An example for the usage of the described integration can
be considered for the service providing information for ac-
counting purposes of the EGEE Accounting Portal [1]. This
service uses APEL [11], which is a log processing applica-
tion to filter data produced in each site. Afterwards, R-GMA
producers collect data from sites and streams them to a cen-
tralized database. The central database collects millions of
records per grid job and stores them offline. Due to the enor-
mous volume of data, only summarized views of the vari-
ous metrics such as Number of jobs, Normalized CPU us-
age, SumCPU, CPU efficiency, etc., are computed offline
and become available to the users. The right balance be-
tween quantity and timeliness of information on one hand
and associated costs on the other should be considered for
this centralized solution. A simply hierarchy describing this
kind of data could be the VO hierarchy used in our exam-
ples. In Sect. 6, a more detailed concept hierarchy in the
experiment for the specific use case is considered and the
corresponding data are distributed among the nodes of a P2P
overlay.

266 Cluster Comput (2010) 13: 257–276

5 Discussion

In this section, we will briefly refer to some aspects of our
system that relate to its parameters as well as optimization
issues.

Memory requirements: The architecture of the proposed
system requires the storage of additional information for the
implementation of the proposed algorithms. In more detail,
each node in the overlay may, relative to the hashing func-
tion as well as the query workload, store the following:

Data The inserted data are considered as tuples contain-
ing a value for each level of the hierarchy and the cor-
responding described fact value(s). When a tuple arrives
to the node responsible for its pivot key, it is inserted in
a tree-structure containing the specific pivot key, so as
to avoid the storage of duplicate values for levels above
the pivotlevel and facilitate the search procedures during
lookups. For each stored tree, at least one tuple with L nu-
merical values for statistic purposes is maintained, one per
level of the hierarchy.

Root Indices Each time that a different root key is inserted
in the overlay, indices are created towards its pivot keys.
Moreover, when a new key is inserted for an existing root
key, the corresponding index is added.

Soft-state indices The flooded queries result in the creation
of soft-state indices, which are utilized for faster resolution
of future queries. The maximum number of allowed indices
is defined for each node through the Imax parameter. The
required space for soft-state indices is O(Imax).

Parameter selection: The introduction of various parame-
ters in our system influences its performance relative to their
values. The threshold value (thr) plays an important role to
the number of the performed reindexing operations. On one
hand, a large threshold allows less reindexing operations and
therefore increases the utilization of the soft-state indices.
This case favors query workloads where the upper levels of
the hierarchy are at most queried while the number of dif-
ferent values is limited. Thus, the probability of duplicate
queries being issued is larger. On the other hand, a smaller
thr value results in more frequent reindexing operations de-
picting the changes in the query trends. In general, the draw-
back of more roll-up and drill-down operations is the band-
width consumption for the movement of the involved tuples
and the invalidation of the existing soft-state indices. How-
ever, these operations are highly effective, when the values
of the lower levels of the hierarchy are more popular. In this
case, the contribution of indices to the performance of the
system is not adequate. Therefore, lower values of the thr
parameter are required for query workloads directed mainly
towards lower levels of the hierarchy and targeting numer-
ous different values.

Soft-state indices help the system improve its perfor-
mance. Nevertheless, maintenance of index consistency may

be problematic in a dynamic system that adapts according to
user preferences. For this reason, we introduce the TTL pa-
rameter: Indices which have not been used for a period larger
than TTL, are not considered as useful and removed. This
constraint ensures that changes in the system (e.g., data lo-
cation, node departures, etc.) will not result in stale indices,
affecting the validity of the lookup mechanism. The amount
of indices can be also calibrated according to the system ca-
pabilities. While memory becomes a cheaper commodity by
the day, the plain size of data discourages an “infinite” mem-
ory allocation for indices. Therefore, after the number of in-
dices has reached a limit Imax, the creation of a new index
results in the deletion of the oldest one. If an indexed value
occupies more than one index, then all of them are erased
for consistency reasons. Calibrating Imax for performance
without increasing it uncontrollably entails knowledge of
our data (e.g., how skewed each hierarchy is). Overall, the
system tends to preserve the most useful indices, namely
the ones directed towards the most frequently queried data
items.

The window parameter W represents the number of pre-
vious statistics maintained by each node for the calculation
of average rates of incoming queries. A large value of W will
fail to perceive load variations, whereas a very small will
have a negative impact, since the average rate of incoming
queries will not be adequate to lead to re-indexing decisions
or may lead to erroneous ones. In order to estimate its value,
we set W = O(1/λ), i.e., we connect the size of the window
with the query interval. The more frequent the requests, the
smaller W can be and vice-versa.

Consistency: Another aspect to be considered is the var-
ious strategies to follow, so as to ensure data consistency
during the various operations. In a highly dynamic environ-
ment, as the one described, where updates and re-indexing
operations occur online, special care should be given to en-
sure the consistency of data during these operations, against
some additional communication and maintenance cost. A re-
markable point regarding consistency issues is the validity
of root indices for the correct execution of updates. The root
keys should be constantly aware of all the existing pivot keys
and confirm their existence after a period. Therefore, it is ad-
visable that root keys issue periodical messages to verify the
validity of the information about their pivot keys.

Moreover, it is also important to ensure the participation
of all relative trees in the roll-up and drill-down operations
and the effectiveness of the locking mechanisms during re-
indexing, so as consequent lookups on the re-indexed data
to return complete results. During these operations, it can be
observed that lookups fail to return complete results due to
the movement of data. In order to face this miss, the data
are cached at the initial nodes as well, until the re-indexing
procedure is completed. Once the tuples are re-inserted and
the root key completes the updates of its indices towards the

Cluster Comput (2010) 13: 257–276 267

new pivot keys, the old trees are removed from their prede-
cessor nodes after the expiration of a TTL. Lookups for val-
ues being re-indexed are also delayed to a node that receives
the re-indexed data until the completion of the transaction.
The root key aware of the ongoing operations on its data, is
also responsible to forward a non-exact match query either
to the nodes initially responsible for the data or the newly-
responsible ones. The creation of soft-state indices for any
value included in the involved trees is not allowed during the
re-indexing period.

Finally, special care is taken during the creation of the
soft-state indices to avoid stale indices. Apart from the TTL
restriction, indices encountering any problem during their
creation are removed.

6 Experimental results

6.1 Simulation setup

We now present a comprehensive simulation-based evalua-
tion of our scheme. Our performance results are based on a
heavily modified version of the FreePastry simulator [12],
although any DHT implementation could be used as a sub-
strate. By default, we assume a network size of 256 nodes,
all of which are randomly chosen to insert tuples and to ini-
tiate queries.

In the most part of our simulations, we use synthetically
generated data. Our data is a tree with each value having
at most one parent. Each distinct value of �i has a constant
number of children in �i+1. By default, our data comprise of
100k tuples, organized in a 4-level hierarchy (see Fig. 1(a))
with one numerical fact (e.g., CPU_time). The number
of distinct values per level are |�0 = 100|, |�1 = 1000|,
|�2 = 10000| and |�3 = 100000|. The level of insertion is,
by default, �1, unless stated otherwise.

For our query workloads, we consider a two-stage ap-
proach: we first identify which level our query will target
according to the levelDist distribution; the requested value is
then chosen from that level following the valueDist distribu-
tion. In our experiments, we use the Zipfian (pi ∼ 1/iθ) dis-
tribution for levelDist, while we express a bias inside each
level using the uniform, 80/20, 90/10 and 99/1 distribu-
tions for valueDist.

Generated queries are issued at an average rate of
1 query

time_unit
, in almost 50k time units total simulation time.

We present results for queries on a single dimension with
multiple levels of hierarchy. Our default thr value is set to
0.3, which is a large enough value to avoid very frequent re-
indexing attempts. Simulations with different values of thr
around this default show small qualitative difference. The
default value of W, which controls how quickly the system
can adapt to changes, is set to 1000 time units. Finally, we

assume a practically infinite value of TTL (indices never ex-
pire).

In this section, we mainly intend to demonstrate the per-
formance and adaptability of our system under various con-
ditions. Our goal is to show that we prove highly efficient
under a variety of data and load distributions and can quickly
adapt to sudden changes in skew without any modification to
the default parameters. Specifically, we measure the percent-
age of queries which are answered without flooding (preci-
sion).

6.2 Performance under different levels of skew

In the first set of experiments we identify the behavior of our
system under a variety of query loads. Specifically, we vary
the number of queries directed to each level by increasing
the θ parameter in the levelDist distribution. For each value
of θ , we also choose values inside each level using four dif-
ferent distributions.

In Fig. 6, queries are skewed towards �0. As θ increases
for levelDist, the performance of our method improves: Re-
indexing is performed sooner as more queries take place and
the exact matches due to the chosen pivot level increase. By
increasing the skew for valueDist, we observe remarkably
high precision rates (close to 100%), because both the ra-
tio of popular queries and the density of queries for certain
tuples increase. Another point that plays a big role is the lim-
ited number of distinct values of �0. Obviously this is quite
small compared to the last level, thus enabling soft-indexing
and faster re-indexing. For a set θ value, the method per-
forms justifiably better as the distribution becomes more
skewed: More queries exist for fewer distinct values. Fi-
nally, we notice that the larger the θ value, the smaller the
difference in precision among the different valueDist distri-
butions.

Figure 7 shows results where our workload favors �3.
Again, we notice a similar trend in performance as valueDist
becomes more biased and our method shows high precision
values, albeit reduced compared to the previous case. We

Fig. 6 Precision when skew directed towards �0

268 Cluster Comput (2010) 13: 257–276

notice that the precision for the same valueDist distribution
decreases as θ increases: This is due to the fact that �3 has
a considerably larger number of values. By increasing the
number of queries for those values, we increase (relative to
the choice of valueDist of course) the probability of queries
to non-indexed values. Nevertheless, the decrease is smaller
as valueDist becomes more skewed.

6.3 Testing against multiple bias points

In the next experiment, we test our method against a more
challenging type of workload (MULTI): While different lev-
els receive an equal number of queries, nevertheless we tar-
get a different part of a data tree from each level. Specifi-
cally, we divide all levels in quarters and target (using dif-
ferent values of valueDist) one quarter per level so that no
quarter is related with any other in the data tree. This is a
very challenging workload, as it forces the method to store
different data at different levels of granularity. Table 1 sum-
marizes the results, where besides the precision we docu-
ment the cost in number of re-indexed tuples as well as the
number of total roll-up and drill-down operations.

Our technique proves extremely efficient in all four work-
loads, achieving very high precision (between 92% and
100%) at low cost: The largest number of operations oc-
cur when we uniformly query the different values in which
case 75% of the tuples are re-hashed and re-inserted from
re-indexing operations. As the valueDist becomes more bi-
ased, the number of re-indexing calls decreases. This clearly

Fig. 7 Precision when skew directed towards �3

demonstrates that our method adjusts its operation according
to the need: The number of trees being re-indexed is propor-
tional to the number of unique trees that are popular. This
is a highly desirable property since for most applications we
anticipate both dynamic and highly skewed loads.

6.4 Performance in dynamic environments

The adaptiveness and performance of the proposed system
in a dynamic environment is examined by this set of exper-
iments. The query distribution encloses a sudden change in
skewness from level �0 towards �3 and vice versa in the mid-
dle of the simulated queries.

Figure 8 demonstrates the behavior of the system when
the query load shifts from �0 towards �3. The results show
that, in all cases, our system increases its precision due to
the combination of re-indexing operations and soft-state in-
dices and the majority of questions are answered by exact
match lookups. The precision reaches over 90% for θ = 2.0
and over 80% for θ = 1.0 before the change in skew. In the
transitional stage, the flooding of the queries increases but
the system rapidly manages to recover and regain its per-
formance characteristics (after at most 5% of the queries).
The steep decrease in precision happens at the exact time
of the shift in the workload: A much larger number of dis-
tinct values belong to �3, thus the existence of useful in-
dices is less probable. The contribution of soft-state indices
is not sufficient to handle the query load until drill-down op-
erations take place. In this stage, the larger the value of θ ,
the larger the decrease in precision and the faster the recov-
ery: As we show in Fig. 9, where the query loads for val-
ueDist 90/10 are considered, both exact match and indexed
lookups are fewer for θ = 2.0. This happens because queries
are more skewed towards �3 and benefit even less from the
already rolled-up trees. However, as θ increases, drill-down
decisions are taken faster, favoring the increase of the exact
match queries that answer the majority of the requests.

The precision of the algorithm is tested against a sudden
shift from �3 to �0 for various workloads and displayed in
Fig. 10. During the steady stages of the simulation, simi-
lar trends to the ones of one directional skew are observed
and the system presents high performance over 80% for all
workloads. As the valueDist becomes more biased, higher

Table 1 Performance
comparison for the MULTI
workload over different values
of valueDist

valueDist precision #roll-ups #rolled-up #drill-downs re-inserts

(%) trees (%)

uniform 92.0 25 250 500 75

80/20 94.3 25 250 171 42

90/10 95.2 25 250 51 30

99/1 99.5 1 10 6 1.6

Cluster Comput (2010) 13: 257–276 269

Fig. 8 Precision over time for various workloads, when skewness
changes from �0 to �3

Fig. 9 Precision over time of non-flooded queries for valueDist 90/10,
when skew is directed from �0 to �3

precision is accomplished, since the number of popular val-
ues shrinks and drill-down operations are performed faster
increasing the adaptiveness of the system. After the change
in the direction of skew, less queries are flooded for the
θ = 2.0 workloads (behavior that contrasts to the previous
experiment). Figure 11 demonstrates a more comprehensive
view of the system after the change in skew. Indices take
over to serve lookups immediately. Due to the smaller num-
ber of distinct values in higher levels, indices perform well.
However, the consecutive roll-ups destroy the existing in-
dices and the performance of the system is influenced neg-
atively. The system regains its performance by the rapid in-
crease in the exact lookups.

The comparison of results among the two shifts of the
workload reveals that the soft-state indices are capable to
preserve the high precision of the system in case of a skew
towards higher levels due to the limited number of differ-
ent values. On the contrary, the adaptiveness of the system

Fig. 10 Precision over time for various workloads when the skewness
of workload changes from �3 to �0

Fig. 11 Precision over time of non-flooded queries for valueDist
90/10, when skew is directed from �3 to �0

significantly depends on the re-indexing operations, when
lower levels of the hierarchy are the most popular. Neverthe-
less, in both cases, the system needs bounded time to reorga-
nize its indexing mechanism and achieve high performance.

6.5 Storage load for different number of nodes

The inserted tuples in the system are stored in tree structures
with the same pivot key to avoid the storage of redundant
information for values above the pivot level. However, these
values may exist in more than one trees stored in different
nodes of the overlay depending on the selected pivot level.
The total number of tree nodes receives its minimum value,
when the root level is chosen as pivotlevel and the maxi-
mum number, when the lowest level of the hierarchy is the
pivotlevel of all trees (≈111k and 400k nodes respectively
for our dataset). Each node of the tree (hence tree node) rep-
resents the value of a tuple for this level. The total number of

270 Cluster Comput (2010) 13: 257–276

Fig. 12 Total number of tree nodes over time for workloads skewed
towards l0 and l3 and valueDist 90/10 and MULTI workloads with
uniform and 90/10 valueDist

tree nodes during the simulation time is presented in Fig. 12.
The increase in the number of tree nodes indicates that drill-
down operations take place, while a decrease depicts the ef-
fects of roll-up operations. Thus, the total number of tree
nodes over time demonstrates the evolution of executed re-
indexing operations. Queries directed towards l3 for θ = 1.0
lead the system to reinsert its tuples slowly to lower levels
of the hierarchy, which tend to be the most popular. Since
the difference in the popularity amongst the levels is not ex-
cessive, the drill-down operations happen during the whole
time of the simulation. In case of the respective workload for
θ = 3.0, the increase of tree nodes is steeper and it is com-
pleted during a short period at the initial stages of the simu-
lation. The most popular trees re-insert their tuples to lower
levels quickly and no major variations are noticed during the
rest of the simulation time. The workloads directed towards
l0 cause no significant variations in the total number of tree
nodes. In both cases of levelDist for these workloads, the
number of tree nodes is preserved close to its initial value,
since the total tree nodes with l1 as pivot level does not differ
notably compared to the tree nodes with l0 as pivot level. Fi-
nally, we comment on the MULTI workloads, where roll-up
and drill-down operations coexist. When the queries target
the values uniformly inside the levels, the re-insertion of tu-
ples continues for a longer period and for a larger number of
tuples than in the respective workload with valueDist 90/10.
The popularity of levels changes for different group of trees
in the MULTI workloads and thus the insertion of tuples to
the most appropriate level occurs in a more concurrent way
than in the workloads skewed towards l3 for θ = 1.0.

The total number of soft-state indices in the system ap-
pears in Fig. 13. The creation of soft-state indices is influ-
enced by the evolution of re-indexing operations. Accord-
ing to the described strategy, a soft-state index follows the
flooding of a query as a supplemental solution to the adap-
tiveness of the pivot level. Therefore, the steep inclination

Fig. 13 Total number of soft-state indices over time for workloads
skewed towards l0 and l3 and valueDist 90/10 and MULTI workloads
with uniform and 90/10 valueDist

Fig. 14 Average number of tree nodes per node

in the curves of the workloads directed towards l3 is jus-
tified considering the fact that the number of different val-
ues in the lower levels is larger than in the upper levels. In
the workloads with higher levels being more popular, the in-
crease of indices occurs at a lower rate. The efficiency of the
re-indexing operations becomes more evident in the case of
the MULTI workload following a uniform distribution inside
the level. New indices are temporarily created, which are re-
moved as soon as roll-up and drill-down operations take over
and the system adapts to the trends of the incoming queries.

The different objects stored in the nodes of the overlay
can be divided in the following categories: the tree struc-
tures storing the values of the selected hierarchy, the root
indices which are created during the insertion of a new root
value and are aware of their pivot keys, the soft-state in-
dices and the statistical information maintained for the re-
indexing decisions. The experimental results of Figs. 14–16
demonstrate the average number of these objects per node or
the items that determine their volume. These values are the
average results during the whole simulation time, derived

Cluster Comput (2010) 13: 257–276 271

Fig. 15 Average number of pivot keys per node

Fig. 16 Average number of soft-state indices per node

by the measurements in regular periods. Thus, they incor-
porate the various changes caused by the roll-up and drill-
down operations. The MULTI workload with uniform dis-
tribution and the skewed workload towards l3 with θ = 1.0
have the maximum number of tree nodes, which conforms
to the results of Fig. 12, where the curves of these work-
loads reach the highest values. It should be noticed that the
presented values for the MULTI workload is the maximum
observed values for this type of workload, since the uniform
valueDist is studied. Therefore, all the trees of the dataset
re-insert their tuples to the appropriate level. If the distribu-
tion of queries alters to 90/10, then the average number of
tree nodes decreases significantly. The average number of
tree nodes for the workload skewed towards l0 remains low.
The average number of pivot keys (see Fig. 15) behaves in
analogous manner to the tree nodes for all the workloads.
The number of pivot keys is correlated to the stored statistic
information and the number of root indices. For each pivot
key, a tuple with L levels is maintained. Moreover, if the av-
erage rate of incoming queries is calculated with the method

of a sliding window with n slots, the number of maintained
tuples should be multiplied with this factor. The number of
existing keys also equals to the number of root indices, since
a separate index is maintained for each pivot key.

The evaluation of the average number of indices is shown
in Fig. 16 and verifies the fact that the more effective the re-
indexing operations are, less indices are created. The MULTI
workload requires the less indices, since the trees adapt their
pivot levels appropriately. The average number of soft-state
indices is larger for workloads skewed towards l3, and this
is a result of various factors. Many trees perform drill-down
operations to lower levels of the hierarchy and the tuples are
more dispersed among the nodes of the overlay, and thus an
indexed value occupy more indices. Moreover, the number
of distinct values is larger and increases the probability of
a non-indexed value to be queried followed by the creation
of a new index. The opposite conclusions are valid for the
workloads directed towards l0.

The precision of the system is stable independently of
the number of nodes participating in the overlay, with an av-
erage 1% deviation. Moreover, the number of nodes does
not influence the total number of pivot keys and tree nodes,
since these values depend mainly on the distribution of the
query workload. The number of soft-state indices is affected
by the number of nodes in the overlay: less nodes increase
the probability of more than one tree containing the same in-
dexed value to be located in the same node and thus only one
index to be created. The distribution of these objects among
the nodes is better as the number of nodes increases. Ac-
cording to the exposed results, when more nodes participate
in the overlay, each node is responsible for a smaller average
number of items.

6.6 Effect of the Imax parameter

The Imax parameter is configured on a per node basis and de-
fines the maximum number of soft-state indices that a node
may store. The creation of a new index results in the removal
of ‘oldest’ ones, namely the ones not utilized for the longest
time, if Imax is exceeded. The idea behind this strategy: if
the indices to be removed were useful, then they would have
been renewed. Otherwise, their removal would not have a
negative impact in the performance of the system.

The Imax value has a varying impact on the performance
of the system depending on the type of the workloads. The
utilization of the indices increases when the query workload
does not indicate to the system an evident direction for a re-
indexing operation, namely in case that more than one levels
are almost equally popular. The more uniform the distribu-
tion of queries, the more indices are created.

Figure 17 shows the achieved precision for various θ ,
when the skew is directed towards l0 and l3 respectively and
the queries target uniformly the values inside a level. The

272 Cluster Comput (2010) 13: 257–276

Fig. 17 Precision for various UNI workloads

workload directed towards the root level does not seem to
be affected by the Imax variation, even though the valueDist
is uniform, which is the most demanding case for indices.
This is explained by the permanent existence of the root in-
dices, which are not taken into account during the calcula-
tion of the Imax value. Moreover, the possible values to be
queried become fewer in the higher levels of the hierarchy
and therefore less storage space is required for the creation
of soft-state indices. In the opposite case of query workloads
directed towards l3, the increase of the Imax value may in-
fluence the precision by almost 10%, especially in the case
of θ = 1.0, where values from almost all levels are queried
and the re-indexing operations are not adequate to cover the
demand of values in all levels. The MULTI workload is a
test case for the system, where the proposed re-indexing
algorithms favor its performance at most. The re-indexing
decisions depict clearly the query trends and the precision
is based on the correction of the pivot level. Therefore, the
variation in the value of the Imax does not affect the achieved
precision.

6.7 Performance for hierarchies with different number of
levels

The number of levels may influence the precision of the sys-
tem as well. The reason is twofold. More levels lead to more
possible candidates for a re-indexing decision and increase
the probability that queries are resolved with the use of soft-
state indices or flooding. In this experiment, 4-level, 6-level
and 8-level hierarchies were used. The number of inserted
tuples remained 100k and the default insertion level is �1.
In order to maintain the number of total tuples stable, the
widths of the trees in each level were narrowed down. The
distribution of the query workload, which includes around
50k queries, is generated using θ = 1.0 for levelDist and a
biased 90/10 distribution for valueDist. The presented re-

Table 2 Precision for different number of hierarchy levels

Levels Towards l0 Towards l3

(%) (%)

4 86 91

6 80 77

8 78 77

sults refer to query workloads skewed towards the highest
and the lowest levels of the hierarchy.

Table 2 depicts the achieved precision for each one of the
described workloads. The increase in the number of levels
results in a decrease in the precision for both type of work-
loads, as expected. A significant reduction in the number of
roll-up operations can be noticed for the experimental re-
sults in the query workloads directed towards l0, as well as
a decrease in the drill-down decisions for the query work-
loads directed towards l3. Moreover, in both cases a trend
of increased re-indexing operations in the opposite direction
of the skewness of the workloads appeared. This behavior is
justified by the fact that more levels exist and the re-indexing
decisions may be more ambiguous requiring corrective re-
indexing operations, so as the system to adapt in the incom-
ing queries. It has been also observed that the number of
queries answered with soft-state indices increase, especially
for workloads directed towards l0. Moreover, the difference
in the achieved precision is more remarkable for the opposite
direction of skew. The number of limited distinct values in
the upper levels favor the re-usability of indices. As shown
in the results of Table 2, the decrease in the precision is less,
when the skewness is towards l0.

6.8 Simulations for real datasets

The proposed system has been tested for a use case scenario
that can be applied to a Grid Information system and tested
against existing solutions. In the described experiment, we
have considered the organization of data and the provided
functionality of the EGEE Accounting Portal developed by
CESGA [1] as a reference point, using real queries and data
in our simulations. The portal gathers the accounting data
of all sites participating in the EGEE and WLCG infrastruc-
tures as well as from other sites belonging to other Grid Or-
ganizations collaborating with the EGEE infrastructure. The
data are further analyzed to generate statistical summaries
that are available to the users. The numerical facts of a user’s
interest are various metrics such as Normalized CPU time,
Number of Jobs, etc., being collected by tools for monitor-
ing data of grid resources. In the case of the specific portal,
the collected data are further processed and inserted in an
offline database. The large volume of the collected values re-
stricts their availability to the users. Aggregated views serv-
ing accounting purposes are generated and stored in a central

Cluster Comput (2010) 13: 257–276 273

database for presentation. In the described approach of this
paper, a similar approach has been adopted. The monitor-
ing of resources and the collection of values is not investi-
gated, supposed that the “traditional” grid tools (e.g. APEL)
are being utilized. Therefore, we assume that the numerical
facts of various metrics are published and processed by a
local service on a per site basis. Afterwards, the published
information can be stored in the corresponding Information
Servers that may exist in each site. The goal of the specific
experiment is to show that the collected information regard-
ing the grid resources can be organized dynamically so as to
adapt to the query workload favoring the distribution of load
among the nodes. The query load per Information Server is
compared to the centralized and distributedCP solution.

The description of the numerical values of the metrics
follows a hierarchy of 7 levels based on the presentation of
data in the aforementioned application. The hierarchy levels
are:

VODiscipline < VO < Category <
SubCategory < Region < SubRegion

< SiteName

The specific hierarchy has been used for all categories
and projects, so as to maintain a common and general de-
scription. In order to assure that a value does not belong to
more than one trees with different values in the root level,
the data have been parsed and uniquely mapped to integer
values taking into account the values between the VO level
and each level until the examined level. This assumption can
be justified, for example the Number of Jobs differs when
the EGEE sites located in Greece are queried for two differ-
ent VOs. Moreover, its a common practise in grid infrastruc-
tures to include the VO attribute in the queries for the Infor-
mation Service. According to the information provided by
this accounting portal, around 700 sites participate in vari-
ous categories and projects of the infrastructure. Each site is
considered as a different node in the simulation of our sys-
tem. The size of the inserted dataset is 5789, and only the
supported VOs by each site have been considered. For ex-
ample, the possible values for a site belonging to the EGEE
project may be:

[High-Energy Physics, atlas, EGEE, Production, South-
Eastern, Greece, HG-01-GRNET].

Thus, the sites belonging to other categories may have not
been registered with a value for each level of the hierarchy.
In this case, the corresponding level has been filled with a
value, which is never queried. For example, such a tuple for
a site that belongs to Tier2 has this form:

[Infrastructure, dteam, Tier2,Tier2Sub, UK, UK-
London-Tier2, UKI-LT2-HEP].

The query workload has been created by real queries
posed in the EGEE accounting portal during a two month
period. Since this application further processes the collected

data and aggregates them, it offers the potential that a query
may refer to a group of VOs. In the presented results, each
query is translated to the equivalent queries and a query for
each VO of the group is generated. Each group of queries
is submitted to the system at once and a standard rate for
the execution of each group is assumed. The same conven-
tion has been followed in the simulation for the centralized
model and distributedCP model. To the extend of our knowl-
edge, it is a common practice to determine the VO when
querying the various tools of the Information services. The
performance of the proposed architecture is compared to the
centralized model, where a central database gathers all the
information and answers the queries and the distributedCP
model, where a central Registry forwards the queries to all
the nodes with relative data. The query workload comprises
of around 20k group of queries, which have been translated
into 250k of queries using the restriction for a unique VO
value for each query. The majority of queries targets l2, l3
and l4 around 85% of the time (19%,36% and 32% respec-
tively).

Experiments have been carried out using all the possi-
ble levels as the default insertion level. The precision of our
algorithms remains high, with only 3% flooded queries at
most. The structure of the dataset and the biased query work-
load favor the resolution of the queries without flooding. The
difference is in the percentage of the exact match queries and
the indexed queries. The precision of exact match queries
reaches around 65%, when the levels l2, l3 and l4 are se-
lected as the default pivotlevel. The selection of these levels
as pivot levels appears as good solution for the distribution
of the objects amongst the nodes as well.

Figure 18 depicts the variations of the average number
of resolved queries per node during the simulation time. At
the start of a time unit, a group of queries is posed to the
system and thus the average load of the centralized solution
is equal to the number of queries included in a group. The
curve concerning the distributedCP model refers only to the

Fig. 18 Average load of queries per node

274 Cluster Comput (2010) 13: 257–276

average query load of a producer. The load of the Registry
node is equal to the node of the centralized solution or to a
fraction of this load if a Registry node exists per VO. The
indexing structure of our system results in a high precision,
while each query is resolved by visiting less nodes and thus
the query load per node is significantly smaller than in the
distributedCP model. The average load per node of our sys-
tem reaches the respective load of a node in distributedCP
model, if l6 is selected as the default pivotlevel. In this case,
the indices forward the queries to an almost equal number
of nodes as in the distributedCP model.

6.9 Performance for dataset of the APB benchmark

The adaptiveness of the system is also tested using an-
other category of realistic data. For this reason, we gener-
ated query sets by the APB-1 benchmark [9]. APB-1 creates
a database structure with multiple query sets by the APB-
1 benchmark [9]. APB-1 creates a database structure with
multiple dimensions and generates a set of business oper-
ations reflecting basic functionality of OLAP applications.
For our experiments, we focus on the product dimen-
sion, a steep hierarchy of 6 levels (the bottom level contains
90% of the members). In more detail, the number of distinct
values per level are |�0 = 50|, |�1 = 150|, |�2 = 800|, |�3 =
3050|, |�4 = 6950| and |�5 = 93050|. Another characteristic
of the specific dataset is that the number of children per node
is not constant, as in the synthetically generated datasets of
the previous experiments. The query load is skewed towards
the lower levels of the hierarchy and 75% of queries refer to
values of the �4 and �5.

The results are depicted in Fig. 19, where the precision
over time for various initial levels of insertion is shown.
It is remarkable that the system adapts to the query load
and presents similar performance despite the selection of the
level used as pivot level during initial insertions, thus the re-
indexing operations -mainly drill-down operations towards

Fig. 19 Precision over time for the APB workload for different initial
pivot levels

�4 and �5 and soft-state indices serve to the incremental pre-
cision, which reaches values near 100%.

6.10 Updates

In order to measure the cost of incrementally updating our
dataset, we randomly select the 90% of the tuples, executed
each of the described query workloads in 6.2 and finally
update the dataset by inserting the remaining 10% of the
tuples. We note here that the workload plays an important
role in the update process as it affects the indexing levels
of the stored tuples and, therefore, the update cost (as tu-
ples may have common attributes with existing ones). The
cost in messages for storing each of the initial tuples is one
lookup message so as to locate the root key and one inser-
tion message to store the tuple. Further lookup messages are
not needed, since no other indices than the ones among the
root keys and corresponding pivot levels have been created
yet. The selected pivot level for the initial tuples is, by de-
fault, �1. The conducted experiments regard the update cost
in terms of additional lookups operations to inform exist-
ing indices about the appearance of the new tuples. In these
set of experiments, we modified the inserted dataset. Table 3
contains the average number of lookups per insertion for up-
dating the soft-state indices. This cost can be considered as
negligible when the skew is towards high levels of the hierar-
chy. The maximum documented cost for skewed workloads
towards �3 and uniform valueDist is close to 2. The less
skewed the distribution, the bigger the possibility of soft-
index existence in levels other than the popular one is. As
skew increases, this cost also diminishes.

6.11 Other experimental results

In this section, we briefly describe other conducted experi-
ments. We experimented by varying the number of concur-
rent queries per time unit for the presented workloads. In
this experiment, we divided the queries of the initial work-
loads of Sect. 6.2 into group of queries. Each group was
posed to the system in the start of the time unit. The ex-
perimental results for workloads skewed towards l0 and l3
are shown in Fig. 20. The measured precision presents neg-
ligible variation, thus showing that the performance of the

Table 3 Number of average lookups for updating indices per insertion
for different values of valueDist

valueDist Skew towards �0 Skew towards �3

θ = 1.0 θ = 2.0 θ = 1.0 θ = 2.0

uniform ≈ 0 ≈ 0 1.99 1.98

80/20 0.01 ≈ 0 1.8 1.16

90/10 0.14 ≈ 0 0.39 0.25

99/1 ≈ 0 ≈ 0 0.01 0.02

Cluster Comput (2010) 13: 257–276 275

Fig. 20 Precision for concurrent queries for valueDist 90/10

system remains consistently high while the system scales to
a considerable number of concurrent users.

Moreover, experiments conducted with up to 1k nodes
showed little qualitative difference. Simulation results for
different values of threshold showed that the fluctuation of
the precision for 0,2 ≤ thr ≤ 0,4 is at most 2%. For values
thr ≥ 0,5 and uniform workloads, the fluctuation reaches
10%. For thr ≤ 0,3, the initial number of queries to allow
re-indexing should increase in order to avoid redundant op-
erations. Experiments for various data distributions with dif-
ferent number of distinct values per level showed no quali-
tative differences. Another important observation is that by
varying the default pivot level the steady-state performance
of our algorithm is not affected, since the re-indexing oper-
ations and soft-state indices adapt the pivot levels appropri-
ately.

7 Conclusions

In this work we described a highly adaptive, scalable, on-
line technique in order to store hierarchical data and do ef-
ficient query processing on them. Our scheme distributes
large amounts of data over a DHT overlay in a way so that
the hierarchy semantics are maintained while eliminating
single points of failure and minimizing data unavailability.
The distinctive characteristic of our method is the adaptive
indexing over the data: The stored hierarchies are indexed
over variable levels according to the granularity of the in-
coming queries. Using limited only knowledge, peers decide
on the indexing level of their stored tuples so that flooding is
minimized. Moreover, there is no need for off-line updates
as our system consistently updates the dataset online at low
cost.

We discussed one interesting application of our method
over a Grid Information System: Distributing the sources of

useful data over a grid system presents significant advan-
tages over the existing approaches. Moreover, our unique re-
indexing mechanism enables automatic aggregation of older
data and more detailed views of recent ones.

Our experimental evaluation over multiple dynamic and
challenging workloads confirmed our premise: Our system
manages to efficiently answer the large majority of queries
using very few messages. It is especially effective in skewed
workloads, adapts to sudden shifts in skew and updates
datasets in a fast, reliable and cost-efficient manner.

Acknowledgements We would like to thank the administration team
of the CESGA EGEE Accounting Portal [1], who kindly provided us
real data regarding the usage of their portal.

References

1. Egee accounting portal. http://www3.egee.cesga.es/gridsite/
accounting/CESGA/

2. Ganglia Monitoring System. http://ganglia.info/
3. GT Information Services: Monitoring and Discovery System

(MDS). http://www.globus.org/toolkit/mds/
4. Hawkeye: A Monitoring and Management Tool for Distributed

Systems. http://www.cs.wisc.edu/condor/hawkeye/
5. R-GMA: Relational Grid Monitoring Architecture. http://www.r-

gma.org/
6. The Globus Toolkit. http://www.globus.org/
7. Aberer, K., Cudre-Mauroux, P., Hauswirth, M.: The chatty web:

emergent semantics through gossiping. In: WWW Conference
(2003)

8. Aberer, K., Cudre-Mauroux, P., Hauswirth, M., Pelt, T.V.: Grid-
vine: building internet-scale semantic overlay networks. In: Inter-
national Semantic Web Conference (2004)

9. OLAP Council, APB- 1 OLAP Benchmark. http://www.
olapcouncil.org/research/resrchly.htm

10. Ester, M., Kohlhammer, J., Kriegel, P.: The dc-tree: a fully dy-
namic index structure for data warehouses. In: ICDE (2000)

11. Byrom, B. et al.: Apel: an implementation of grid accounting using
r-gma. In: UK e-Science All Hands Conference (2005)

12. FreePastry. http://freepastry.rice.edu/FreePastry
13. Huebsch, R., Hellerstein, J.M., Lanham, N.L., Boon, T., Shenker,

S., Stoica, I.: Querying the internet with PIER. In: VLDB (2003)
14. Kantere, V., Tsoumakos, D., Sellis, T., Roussopoulos, N.:

GrouPeer: dynamic clustering of P2P databases. Inf. Syst. 34(1),
62–86 (2009)

15. Koloniari, G., Pitoura, E.: Content-based routing of path queries
in peer-to-peer systems. In: EDBT (2004)

16. Lakshmanan, L., Pei, J., Zhao, Y.: QC-trees: an efficient summary
structure for semantic OLAP. In: SIGMOD (2003)

17. Ng, W.S., Ooi, B.C., Tan, K.L., Zhou, A.: PeerDB: a P2P-based
system for distributed data sharing. In: ICDE (2003)

18. Sismanis, Y., Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Hi-
erarchical dwarfs for the rollup cube. In: DOLAP (2003)

19. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval
using self-organizing semantic overlay networks. In: SIGCOMM
(2003)

20. Tatarinov, I., Halevy, A.: Efficient query reformulation in peer-
data management systems. In: SIGMOD (2004)

21. Wang, W., Lu, H., Feng, J., Yu, J.X.: Condensed cube: an effective
approach to reducing data cube size. In: ICDE (2002)

22. Zhang, X., Freschl, J., Schopf, J.: Scalability analysis of three
monitoring and information systems: MDS2, R-GMA, and Hawk-
eye. J. Parallel Distrib. Comput. 67(8), 883–902 (2007)

http://www3.egee.cesga.es/gridsite/accounting/CESGA/
http://www3.egee.cesga.es/gridsite/accounting/CESGA/
http://ganglia.info/
http://www.globus.org/toolkit/mds/
http://www.cs.wisc.edu/condor/hawkeye/
http://www.r-gma.org/
http://www.r-gma.org/
http://www.globus.org/
http://www.olapcouncil.org/research/resrchly.htm
http://www.olapcouncil.org/research/resrchly.htm
http://freepastry.rice.edu/FreePastry

276 Cluster Comput (2010) 13: 257–276

Athanasia Asiki received her
Diploma in Electrical and Com-
puter Engineering (2005) from the
National Technical University of
Athens, Greece. She is currently
a Ph.D. Student in the School of
Electrical and Computer Engineer-
ing, National Technical University
of Athens. Her research interests
include large-scale distributed sys-
tems, grid middleware, develop-
ment of grid applications, search
techniques in Peer-to-Peer systems.
She is a student member of the IEEE
and member of the Technical Cham-
ber of Greece.

Dimitrios Tsoumakos currently
holds a visiting faculty position
in the Computer Science depart-
ment of the University of Cyprus.
He is also a senior researcher in
the Computing Systems Labora-
tory of the Department of Electri-
cal and Computer Engineering of
the National Technical University
of Athens (NTUA). He received his
Diploma in Electrical and Computer
Engineering from NTUA in 1999,
he joined the graduate program in
Computer Sciences at the Univer-
sity of Maryland in 2000, where he

received his M.Sc. (2002) and Ph.D.(2006).

Nectarios Koziris received his
Diploma in Electrical Engineer-
ing from the National Technical
University of Athens (NTUA) and
his Ph.D. in Computer Engineer-
ing from NTUA (1997). He joined
the Computer Science Department,
School of Electrical and Computer
Engineering at the National Techni-
cal University of Athens in 1998,
where he currently serves as an
Associate Professor. His research
interests include parallel architec-
tures, loop code optimizations, in-
teraction between compilers, OS

and architectures, communication architectures for clusters (OS and
compiler support) and resource scheduling (cpu and storage) for large
scale computer systems. He has published more than 100 research pa-
pers in international refereed journals and in the proceedings of inter-
national conferences and workshops. He has also published two Greek
textbooks “Mapping Algorithms into Parallel Processing Architec-
tures”, and “Computer Architecture and Operating Systems”. Nectar-
ios Koziris is a recipient of the IEEE IPDPS 2001 best paper award for
the paper “Minimising Completion Time for Loop Tiling with Com-
putation and Communication Overlapping” (held at San Francisco,
California). He serves as a reviewer in International Journals and var-
ious HPC Conferences (IPDPS, ICPP etc.). He served as a Chair and
Program Committee member in various IEEE/ACM conferences and
workshops. He is a project leader in several EU (FP5, FP6 and FP7)
and national Research Programmes. He is a member of IEEE Computer
Society, member of IEEE-CS TCPP and TCCA (Technical Committees
on Parallel Processing and Computer Architecture), ACM and chairs
the Greek IEEE Computer Society Chapter. He also serves as the Vice-
Chairman for the Greek Research and Education Network (GRNET-
Greek NREN, www.grnet.gr), Vice-Chairman for the Free/Libre/Open
Source Software non-profit company (ELLAK www.ellak.gr), founded
by the Greek Universities and Research Centers.

http://www.grnet.gr
http://www.ellak.gr

	Distributing and searching concept hierarchies: an adaptive DHT-based system
	Abstract
	Introduction
	Related work
	An adaptive indexing scheme to support concept hierarchies
	Notation
	Data insertion
	Data lookup and soft-state indices
	Re-indexing operation
	Updates

	Case study: grid information services
	Discussion
	Experimental results
	Simulation setup
	Performance under different levels of skew
	Testing against multiple bias points
	Performance in dynamic environments
	Storage load for different number of nodes
	Effect of the Imax parameter
	Performance for hierarchies with different number of levels
	Simulations for real datasets
	Performance for dataset of the APB benchmark
	Updates
	Other experimental results

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

