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Abstract. We present APRE, a replication method for unstructured Peer-to-Peer
overlays. The goal of our method is to achieve real-time replication of even the
most sparsely located content relative to demand. APRE adaptively expands or
contracts the replica set of an object in order to improve the sharing process and
achieve a low load distribution among the providers. To achieve that, it utilizes
search knowledge to identify possible replication targets inside query-intensive
areas of the overlay. We present detailed simulation results where APRE exhibits
both efficiency and robustness over the number of requesters and the respective
request rates. The scheme proves particularly useful in the event of flash crowds,
managing to quickly adapt to sudden surges in load.

1 Introduction

Peer-to-Peer (hence P2P) computing represents the notion of sharing resources avail-
able at the edges of the Internet. Its success can still be largely attributed to file-sharing
applications which enable users worldwide to exchange locally maintained content. A
basic requirement for every P2P system is fault-tolerance. Since the primary objective
is resource location and sharing, we require that this basic operation takes place in a
reliable manner. In a variety of situations, the distributed and dynamic nature of the
target environments stress the system’s ability to operate smoothly. For example, the
demand for certain content can become overwhelming for the peers serving these ob-
jects, forcing them to reject connections. Flash crowds, regularly documented surges in
the popularity of certain content, are also known to cause severe congestion and degra-
dation of service [1]. Failing or departing nodes further reduce the availability of various
content. Consequently, resources become scarce, servers get overloaded and throughput
can diminish due to high workloads.

Data replication techniques are commonly utilized in order to remedy these situ-
ations. Replicating critical or frequently accessed system resources is a well-known
technique utilized in many areas of computer science (distributed systems, databases,
file-systems, etc) in order to achieve reliability, fault-tolerance and increased perfor-
mance. Resources such as content, location of replicas, routing indices, topology infor-
mation etc, are cached/replicated by multiple nodes, alleviating single points of contact
in routing and sharing of data. This has the additional benefit of reducing the average
distance to the objects. Replication can be performed in a variety of manners: Mirroring,
Content Distribution Networks (CDNs [2, 3]), web caching [4], etc.



Fig. 1. Part of the overlay network of our model. Dark nodes inside the bold dotted ellipse rep-
resent Mi, while those inside the thin dotted ellipse represent M j. Peers with a file attached also
serve objects i or j

However, these approaches often require full control and provide static replication.
Static replication schemes require a priori knowledge of the popularity/workload distri-
bution in order to compute the amount of replicas needed. In large scale unstructured
P2P networks, peers usually operate on local knowledge, having variable network con-
nectivity patterns and no control over the induced topology or workload. Data availabil-
ity and efficient sharing dictate replication in this challenging environment. Structured
P2P systems (DHTs) provide with the state necessary to accurately identify the paths
that requests take. However, such information is not available in unstructured overlays.
File-sharing applications implicitly handle replication through object downloads, while
some force their users to maintain the new replicas for the benefit of others. Yet, this
does not tackle the issue of real-time replication responsive to workload for unstruc-
tured environments.

In this work we present APRE (Adaptive Probabilistic REplication), a replication
method based on soft-state probabilistic routing indices. Our approach focuses on pro-
viding an adaptive solution to the problem of availability together with minimizing the
instances of server overloads and serious service degradation. We intend for our sys-
tem to “expand” and “contract” its resources according to the workload as perceived
locally. New replicas are created in areas of high demand in the overlay, thus disposing
of the need of advertising them. Moreover, this will be done in a completely decentral-
ized manner, with minimal communication overhead and using absolutely affordable
memory space per node.

1.1 Our Framework and Overview of APRE

We assume a pure Peer-to-Peer model, with no imposed hierarchy over the set of par-
ticipating peers. All of them may serve and request various objects. Each peer locally
maintains its own collection of objects, as well as a local view of the system. Ignoring
physical connectivity and topology from our talk, we generally expect peers to be aware
of their one-hop neighbors in the overlay, while maintaining any other protocol-specific
information (e.g., search indices, routing tables, etc). The system is expected to exhibit



a dynamic behavior, with peers entering and leaving at will and also inserting/removing
objects from their repositories. The overlay structure will also be affected, since nodes
are not guaranteed to connect to the same neighbors each time.

As a motivating example, assume an unstructured P2P system, where peers share
and request replicated resources. Objects are assumed to be requested regularly, e.g.,
results of a live sports meeting, weather maps, security updates, real time aggregated
statistics, software, etc. There exist some nodes (similar to the web servers or mirror
sites in the Internet) that provide with fresh content, but their connectivity or availability
varies, as happens with all other network nodes. Peers that are interested in retrieving
the newest version of the content conduct searches for it in order to locate a fresh or
closer replica.

Figure 1 gives a graphic representation of our system. For each object i, there exists
a set of peers called the server set Si = {si1 ,si2 , . . . ,sik} that serve the specific object.
These are the nodes that, at a given time, are online, store object i and are willing
to share it. A subset of Si, the mirror set Mi ⊆ Si (the shaded peers) represents the
set of peers that, if online, always serve i. This does not imply that all peers in Mi
will always be online, their connectivity in the overlay will remain the same, or that
they will never refuse connections. But we can assume, without loss of generality, that
these nodes will be mostly available. Our assumption is not unrealistic: Imagine that
these servers can represent mirror sites/authority nodes that provide with up-to-date
content. Nevertheless, they are not guaranteed to be always on-line, nor do they provide
similar services. Apart from the mirror set, other peers that already host or have recently
retrieved an object can serve requests for it (nodes with files attached to them in Figure
1). A server set comprises of these nodes plus the corresponding mirror set.

Naturally, peers may belong to server or mirror sets for multiple objects. While this
is a symmetric environment, it is clear that nodes will exhibit different sharing abilities.
A variety of parameters, including storage and CPU capability, popularity of stored
objects, system workload, connectivity, etc, contribute to this fact. Some of these factors
remain more or less static over time (e.g., processing power or the maximum available
bandwidth of a host), while others change dynamically. In this work, we focus on two
of these parameters, namely workload and object popularity as they are manifested
through the request rate λ. It is obvious that servers of popular (or temporally popular)
items receive a larger number of requests, which can possibly affect their sharing ability
as well as the system’s behavior.

Given this general framework, our goal is to design and implement a replication
protocol that will provide efficient sharing of objects (in terms of providing low load
operation), scalability and bandwidth-efficiency. APRE is a distributed protocol that
automatically adjusts the replication ratio of every shared item according to the current
demand for it. By utilizing inexpensive routing indices during searches, loaded servers
are able to identify “hot” areas inside the unstructured overlay with a customizable
push phase. Chosen nodes receive copies thus sharing part of the load. Under-utilized
servers become freed and can host other content. The rationale behind APRE is the
tight coupling between replication and the lookup protocol which controls how searches
get disseminated in the overlay. By combining the Adaptive Probabilistic Search (APS)
state with APRE, we are able to identify in real-time “hot” or “cold” paths and avoid the



Indices Initially After walkers finish After the updates
A→B 30 20 20
B→C 30 20 20
C→D 30 20 20
A→E 30 20 40
E→F 30 20 40
A→G 30 30 30

Fig. 2. Node A searches for an object stored at node F using APS (pessimistic) with two walkers.
The table shows how index values change. X→Y denotes the index value stored at node X for
neighbor Y relative to the requested object.

need of advertising constantly created replicas. Furthermore, we show that this method
provides a very robust replication with minimum change in the server set per replication
cycle.

2 Probabilistic Resource Location

2.1 Probabilistic Search

We now briefly describe the APS [5] search method, which is the basis for our repli-
cation scheme. In APS, each node keeps a local index consisting of one entry for each
object it has requested per neighbor. The value of this entry reflects the relative prob-
ability of this node’s neighbor to be chosen as the next hop in a future request for
the specific object. Searching is based on the deployment of k independent walkers and
probabilistic forwarding. Each intermediate node forwards the query to one of its neigh-
bors with probability given by its local index. Index values are updated using feedback
from the walkers. If a walker succeeds (fails), the relative probabilities of the nodes on
the walker’s path are increased (decreased). The update procedure takes the reverse path
back to the requester and can take place either after a walker miss (optimistic update
approach), or after a hit (pessimistic update approach). Figure 2 shows an example.

APS exhibits many plausible characteristics as a result of its learning feature. Every
node on the deployed walkers updates its indices according to search results, so peers
eventually share, refine and adjust their search knowledge with time. Walkers are di-
rected towards objects or redirected if a miss or an object deletion occurs. APS is also
bandwidth-efficient: It induces zero overhead over the network at join/leave/update op-
erations and displays a high degree of robustness in topology changes.

2.2 Utilizing Search indices

One interesting observation is that the values of the stored indices are refined as more
searches take place, enabling the network to build a useful soft-state. After some queries
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take place, paths with large index values connect the requesters to the content providers
and identify query-intensive areas inside the overlay.

APS keeps an index value for each neighbor. Extending this, each peer P also main-
tains the index values that its neighbors hold relative to P. If X → P denotes the in-
dex value stored at node X concerning neighbor P for a particular object, then peer P
must know X → P, for each neighbor X . These values can be made known to P during
the search phase: Whenever a search is conducted and X forwards to P, it piggybacks
X → P. We call these new stored values the reverse indices, to distinguish them from
the indices used by APS in searches (see Figure 3).

Reverse indices are used by nodes in order to forward messages along high demand
paths in an unstructured overlay. These messages can be forwarded either to the top-k
or probabilistically selected neighbors on a hop-by-hop basis. They are discarded either
when their TTL value reaches zero or if they are received by a node more than once due
to a cycle. Reverse indices get updated during searches, but this is not enough: There
may be peers that have searched for an object and built large index values in the past,



Fig. 6. The shaded oval represents a server set for a specific object. Our system expands by cre-
ating replicas inside two areas where demand (depicted by arrows) is high.

Algorithm 1 Expand
1: if Replica i at node s reaches its limit then
2: P← FindPossibleServers(i); {P∩Si = /0}
3: Activate(i) at Y ⊆ P {Replicate at a subset of the nodes in the high-demand area}
4: end if

but are no longer interested in it. If searches are no longer routed through those peers,
the respective reverse index values will not be updated and will remain high.

To correct this situation, we add an aging factor to the reverse indices, which forces
their values to decrease with time. Peers need to keep track of the time that a reverse
index was last updated in order to acquire its correct value before using it. When a peer
receives a search message, it sets the corresponding reverse index to the piggybacked
value and its last modified field to the time of receipt. We describe this process in Figure
4. The value of the index decreases exponentially, while two searches at times t1, t2 reset
its value. A push message received at time t3 will use the value as shown in the figure.
The last modified value is also reset when a reverse index is used, since a peer computes
its current value before using it.

3 Our “Expand-Contract” Technique

Our main goal is to provide a completely decentralized mechanism through which the
system will adaptively expand its replica size when demand is increased and will shrink
when demand will fall. APRE is based on two basic operations: Expand and Contract.

The high-level behavior of our system can be described using a simple model (Fig-
ure 5): In normal mode, nodes can adequately serve requests and also retrieve objects.
As load increases due to incoming requests, some reach their self-imposed limits. By
invoking the Expand process, we aim at bringing the node status back to normal and
lower the average load for a specific object through the creation of more replicas. Nor-
mal operation through the distribution of load will not be necessarily achieved in a
single step. Consider, for example, that a peer initiating Expand may receive requests
for multiple objects. Expanding with respect to one of them will probably lower its load,
but will not necessarily bring its level back to normal. As load decreases, nodes can free
up space (and the respective resources) and thus share a bigger portion of the workload.

Conversely, consider that one or more subsets of Si have recently received very few
requests for object i. This practically means that an amount of their storage space is



Fig. 7. Due to low demand in certain regions of the server set (depicted as white areas inside the
dotted line), our system contracts its replica set

Algorithm 2 Contract
1: if (Replica i at node s is under-utilized) or (s receives Activate( j)) then
2: i←ChooseOb ject(); {i is among the candidates for eviction}
3: Deactivate(i);
4: if (s received an Activate( j)) then
5: Activate( j);
6: end if
7: end if

under-utilized. They could remove i to free up space or replace it with another object of
higher demand. We have to stress here the point that the system will not force any peer
to store or serve an object until this becomes necessary. Peers with available storage
can play that role. Contract will also be invoked when a peer is called to join Si but
cannot do so without exceeding its limits (e.g., available storage). Note that peers can
still choose to reject a certain action, e.g., refuse to remove an object in order to serve a
new one.

Algorithm 1 describes the high-level operation of the Expand process. It is invoked
by peers receiving more requests than those that they are willing to accept. Overloaded
peers have to identify the set P, i.e., candidate nodes for replication inside query inten-
sive areas. A subset Y of these nodes is selected and, upon their agreement, the new
replicas are transfered (Activate). Figure 6 shows an example of our system expanding
in response to increased demand for a specific object. On the left, we see some initial
server set (gray oval) and the demand for i (arrows from various parts of the network).
Servers in two areas are overloaded with requests, thus forcing extra replicas in those
two areas to be activated. Si expands, as we see on the right part of the picture, in
response to the current demand for object i.

Algorithm 2 describes our Contract process. It is invoked by a peer that either re-
ceives a low amount of requests for the object(s) it serves or is requested to serve a more
popular one but cannot do so without freeing up some space. In any case, peers stop
serving the object(s) that fall into these categories (Deactivate). Function ChooseOb-
ject decides at each point which object should be deactivated at nodes that have decided
to serve a new object (i.e., received an Activate) but have reached their storage capaci-
ties. Natural choices are to have the new replica replace the least recently requested or
the least popular one. Figure 7 shows that two areas of the server set (the areas inside the
dotted line) do not receive any requests for object i. This leads to the contraction of Si
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Fig. 8. After searches for an object at s take place, reverse index values are updated and a push
phase creates new replicas inside areas of high demand (dotted links)

which is now the gray oval on the right part of the figure. Our goal is to achieve a system
behavior that resembles the buffer management techniques in databases: Viewing the
P2P network as a large buffer, we want to decide (in a distributed and dynamic manner)
the ratios of objects in the buffer according to user-specified queries (i.e., workload).

3.1 Protocol Implementation

In this section we describe the actual implementation of the APRE protocol as described
by the Expand and Contract algorithms. We assume that servers measure load and per-
form replication on a per-object basis, at the same level of granularity with lookup and
reverse indices.

The conditions of line 1 in Algorithms 1 and 2 describe when Expand or Contract
are initiated. We believe that each peer can independently choose when to initiate an
expansion or when to deactivate a replica. Therefore, there is no need for any message
exchange between servers. We assume that each server s defines the maximum number
of requests that each object i can accept per time unit Limitup

s,i . If it receives less than
Limitdown

s,i requests for object i, this replica is deactivated/deleted from the node’s cache
without any further communication. Obviously, the total maximum capacity for server
s is equal to ∑

i
Limitup

s,i , where i refers to every object that s serves.

In order to discover candidate new servers to host replicas of i (i.e. locate subset Y ),
whenever the local load for object i (measured in requests per time unit) λs

i (t) exceeds
the limit Limitup

s,i , the respective server s issues a special message which is forwarded to
k neighbors with the k highest reverse index values. The push message also contains the
amount of overload Di(t) = λs

i (t)−Limitup
s,i . Each node that receives this message, inde-

pendently decides whether to join Si according to our implemented replication policy.
This phase continues with each intermediate node forwarding this message to k neigh-
bors in a similar fashion until either its TTL value reaches zero or a duplicate reception
is detected. Figure 8 shows an example of our scheme at work: Black nodes represent
requesters of the item held at node s. APS searches are depicted by arrows. In the push
phase, paths with high index values are visited (links with dotted lines). The new shaded
nodes with bold outline represent possible replicas created.



Each node on the path independently decides whether it will join Si according to our
replication policy. Currently, we have implemented three: FurthestFirst, ClosestFirst
and Uniform. In FurthestFirst, the probability of a node joining Si increases with the
message distance, while the opposite occurs in ClosestFirst. In Uniform, all nodes are
given the same probability. After subset Y has been identified, replicas are transmitted
and activated.

In order for APRE to adapt to various workloads and avoid system oscillation at
the same time1, we introduce a scaled replication policy: We regulate the number of
replicas activated per push phase according to the amount of overload for object i,
Di(t), as observed by the server initiating the push at time t. To achieve that, we de-
fine a set of intervals {d1,d2, . . . ,dm} that group the different values of Di. Each in-
terval dk : {(lk,uk),{pk1 , pk2 , . . . , pkT T L}} is defined by an upper and lower value and
TTL probability values, one for each hop distance. For the interval limits, we require
that l1 < u1 = l2 < u2 . . . < um. When a server receives a push message, it joins Si with
probability pkδ

, if lk < Di ≤ uk and the message has travelled δ hops. Probability values
increase as D falls into higher number intervals (i.e., pkδ

< p(k+1)δ
). Thus, a heavily

overloaded server will create more replicas than a less overloaded one and marginally
overloaded peers will not alter Si significantly. We note here that each server locally
estimates λi(t), the number of requests for object i per time unit.

4 Results

We test the effectiveness of APRE using a message-level simulator written in C. Object
requests occur at rate λr with exponentially distributed inter-arrival times. At each run,
we randomly choose a single node that plays the role of the initial Mi ≡ Si set and a
number of requesters, also uniformly at random. Results are averaged over several tens
of runs. We utilize 10,000-node random graphs with average node degrees around 4
(similar to gnutella snapshots [6]) created with the BRITE [7] topology generator.

To evaluate the replication scheme, we utilize the following metrics: The average
load Λ observed as the number of received requests per second in Si. To measure the
disparity of the load distribution, we measure its standard deviation σΛ. A high value for
σΛ indicates that load is very unevenly balanced across Si. Besides the size of the server
set, we also keep track of the number of replica activations/de-activations. Frequent
changes in Si incur huge overheads in terms of messages and bytes transferred.

APRE Parameters: We assume that (Limitup
s ,Limitdown

s ) = (18,3) requests/sec, for
each server s. When Expand is initiated, peers forward to 2 neighbors with the largest
reverse index values. We utilize a scheme with 3 distinct intervals for values of D: [0−
5],(5−20] and (20−∞). While we experimented with more fine-grained granularities,
the results did not vary considerably. Finally, we assume no item can be replicated at
more than 40% of the network nodes2.

We compare our method against a random replication scheme as well as path-
replication as applied by Freenet [8] (and in effect by lar [9]). In the first case, we

1 replicas with perceived load a little above or below the limits, frequently entering and leaving
Si

2 This external condition simulates the natural limitations in storage that exist in most systems
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Fig. 9. Variation in Λ and |Si| over increasing λr values

randomly create the same number of replicas as our method. In path replication (hence
path-cache), each time a server is overloaded we replicate the object along the reverse
path to the requester. In every case, the APS method is used for lookups, while in path-
cache replicas are also deactivated using our Contract scheme. Obviously, by varying
the push method and the replication probabilities, APRE can behave either as path-
cache, random, or in between with a variable rate of replica creation per workload. This
allows for full customization according to the system’s primary objects, namely low
load (more replicas) or space (replicas only where necessary).

4.1 Basic performance comparison

For our default setting, we assume 2000 random requesters as we vary their request
rate. Figure 9 presents the variation in Λ and |Si|.

APRE effectively expands Si in order to accommodate increased demand and man-
ages to keep all servers into the Normal Operation zone, well below Limitup (identified
by the bold horizontal line). Our first observation is that FurthestFirst achieves lower
Λ values by creating more replicas than ClosestFirst. Downstream paths during the
“push” phase contact an increasing number of nodes as their distance from the initia-
tor increases, thus giving FurthestFirst an increased probability of replication. Uniform
behaves in-between, creating replicas equally at all distances. Path-cache exhibits a
steeper increase in Λ and fails to keep its value within the acceptable region for large
λr. Choosing only successful walks to replicate along, quickly “saturates” the frequently
used paths with replicas. Increased demand merely forces the algorithm to utilize a few
more paths, which is the reason why this method fails to increase the replica set to meet
the limits.

It is interesting to note that APRE exhibits small σΛ values, ranging from 3.3 to
11. It increases to 14.9 only when λr = 20/sec (see Figure 10). These values are either
smaller or at most comparable to Λ, a good indication of load balancing. On the other
hand, randomly placing the same number of replicas yields significantly worse load
distributions, with σΛ values roughly twice as large. This is a clear indication of the
need for correct placement inside structureless multi-path overlays. Finally, path-cache
behaves in-between, with larger deviation values than APRE that converge as load in-
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creases. This happens since both methods base their replication on paths connecting
requesters and servers.

Moreover, we show that APRE achieves a much more robust replication. The sta-
bility of the server population constitutes an important metric to the evaluation of a
replication scheme. This is measured by the average ratio of new replicas entering the
server set per replication phase over the size of the server set. This quantity approxi-
mates the amount of marginally under-utilized replicas in the overlay: Receiving few
requests, they get deactivated. Server overloads force them to get re-activated, produc-
ing an oscillating effect. Obviously, this is a highly undesirable situation: network and
local resources are burdened by a multiplicative factor, since replicas need both control
messages and data transfer for reactivation. Figure 11 shows that APRE is particularly
robust, altering at most 3% of Si per push phase, while Path-cache oscillates and per-
forms poorly in most runs. altering a large percentage of the server set. The variability
in the amount of oscillation is due to the effect we described before: An increase in
the demand is not always followed by an increase in the number of replicas. In these
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situations, the existing ones receive the extra amount of requests (assisted by the APS
scheme), thus reducing the marginally idle servers.

Figure 12 displays the average percentage of overloaded servers at any time for
all three methods. Our technique clearly outperforms the two competing methods: For
λr < 10/sec, less than 4% of servers are overloaded, while about 10% and 25% are
documented as overloaded for the largest demand. Random, having the same number of
servers, exhibits twice as many overloaded nodes. Even though the learning feature of
APS helps in redirecting queries, yet the load cannot be evenly distributed. Path-cache
shows the worst performance (at least 3 times larger ratio of overloaded peers than
APRE), reaching 75% at the highest λr value. Replicating closer to requesters creates,
as we saw, more service points, thus marginally reducing the number of overloaded
instances for FurthestFirst (Uniform exhibits the same curve).

Figure 13 shows the load distribution of every server s at a random point in time
(λr = 4/sec). Servers are sorted in decreasing order of load. Our method exhibits a less
steep curve and, more importantly, has only 3 servers above Limitup, compared to 54
for path-cache. Random replication causes even more unbalanced load.

The same experiment is repeated with 5,000 requesters, which constitute 50% of
the overlay (see Figures 14 and 15). APRE again keeps the system within its limits,
except for the two cases where even the largest replica set cannot achieve that (75k and
100k total queries per second). Still, our method shows remarkable stability in the Si
population for both strategies, while Path-cache exhibits even worse performance than
before.

Finally, Figure 16 shows how Λ and |Si| vary with time, using ClosestFirst. For all
values of λr, APRE manages to bring Λ to a steady state in few time steps, a state which
is hence maintained with almost no deviation. The same is true for the size of Si, with
the exception that for high total demand, it takes longer to reach the steady state. This
is due to the fact that there is a limit to the maximum amount of replication per push
phase for our method (as there is for path-cache) that causes the delay in reaching the
constant values.
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Fig. 16. Λ and |Si| over time for 5000 requesters and multiple λr values

4.2 Flash Crowds

Thus far we established our basic premise, that replication along high demand paths in
the overlay proves an effective and highly robust solution in a variety of metrics and
workloads. Although our method does not explicitly offer load-balancing, it achieves a
well-proportionate load distribution. We also showed that our method is advantageous
to randomly replicating inside the network or merely choosing a single path and fully
replicating along it. In the first case, few replicas receive the majority of requests, while
in the second case the composition of the replica sets changes very frequently. Our
method outperforms both alternatives by keeping fewer peers over the sharing limit and
showing less disparity in the distribution of load among servers.

In the next experiment, we examine the behavior of our method when we experience
a sudden surge in the workload. This is often referred to as a flash crowd, an unexpected
rise in requests towards specific item(s), typically due to some newsworthy event that
just took place. Flash crowds have been regularly documented in web traffic history
(e.g., September 11th) and are known to cause severe congestion at the network layer.
Requests may never reach content servers while others do so with significant delays,
caused by packet loss and retransmission attempts. Content holders are unable to handle
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Fig. 17. Effect of flash crowds in Λ and Si in two different settings

the volume of requests while end-users experience long delays and failures in their
queries.

To simulate a similar situation, we start our system with 500 requesters querying at
rate λr = 2/sec. At time t=401sec, 10 times as many requesters start querying for this
item at rate λr = 12/sec. The parameters return to their initial values at time t=601sec.
On average, the total demand during the flash-crowd period increases by a factor of over
70. Note that this is the worst case scenario, when simultaneously both requesters and
rates increase. We present the variations in Λ and |Si| in the first 2 graphs of Figure 17.

APRE promptly manages to meet the surge in requests by increasing the replication
ratio by a factor of 30. Excluding a very short window due to our mechanism’s response,
our method succeeds in keeping the load factor below the limit (with σΛ < 10) and
steady through time. At both moments of load change, replicas are activated and de-
activated rapidly to meet the extra requests or reduced traffic. While path-cache shows
similar response speed, it creates more servers in the low-workload period and less than
the minimum number required to keep content providers from overloading during the
surge.

The next two figures show how the same two metrics vary in a more challenging
flash-crowd setting. Here, we initially set 500 requesters with λr = 1/sec, while for time
t ∈ (400,480], 5000 requesters query at rate λr = 10/sec. On average, the workload in-
side the overlay increases by a factor of 120. Our results show that, even for shorter and
steeper changes, APRE very successfully adapts to the surge in requests. On average, Si
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is expanded by a factor of 175 in order to reduce and balance load (our results document
an average σΛ ' 8.6).

4.3 Other Experiments

We test our method on a set of 4,000-node power-law graphs created with Inet-3.0
generator [10]. These graphs have an average degree of d = 4.3 (maximum degree
equals to 855), while over 30% of the nodes have only one neighbor. Figure 18 shows
how Λ varies with time for both replication strategies used in APRE using 1000 or 2000
nodes as requesters.

These topologies noticeably affect performance compared to our previous tests.
Even for average-range λr values, Λ moves close to the overload line, while expan-
sion shows diminished ability to extend Si. This is consistent with results documented
in previous work [5]. The tested topologies offer fewer paths between servers and
clients, while a large percentage of the nodes only have one neighbor. This also ex-
plains why FurthestFirst outperforms ClosestFirst. Favoring replication close to the re-
questers quickly saturates available nodes due to lack of alternate paths. Nevertheless,
its is worth to notice that our method still manages to keep Λ at lower levels. Even at the
2k-ClosestFirst run, where Λ > Limitup, 14% of the servers are overloaded compared
to 20% by path-cache.

We must note here that the replication protocol is not always responsible for over-
loaded servers. In many occasions, the amount of demand or the overlay connectivity
cannot allow for more extensive or balanced replication. As we experiment with more
densely connected graphs, APRE performs inside the load limits where it failed to do
so over more sparse overlays.

In the accompanying technical report [11], we also present results on our method’s
behavior over variable maximum replication ratios and different values for the load
limits, as well as load-balancing analysis based on a different metric.



5 Related Work

Replication is a well-known technique utilized to achieve high availability and fault-
tolerance in large-scale systems. While applied to a variety of contexts, we focus in the
area of distributed (P2P) systems.

Structured overlays (DHTs) balance routing between network nodes, due to the na-
ture of the hashing functions used. Moreover, in systems like CFS [12] and PAST [13],
each item (or chunk of it) is replicated on a set number of network nodes. DHTs take
advantage of the routing structure, which in effect allows for almost-deterministic paths
between two nodes, thus identifying “hot” areas easily. Nevertheless, DHTs are not op-
timized for skewed access patterns and direct such traffic to few nodes responsible for
popular content.

DHash [14] is a replication method applied on Chord [15]. The protocol allows for
r copies to be stored at the r immediate successors of the initial copy’s home. In [16],
the authors propose the storage of at most R replicas for an object. Their location is
determined by a hash function, allowing requesters to pro-actively redirect their queries.
The work in [17] proposes replicating one hop closer to requester nodes as soon as peers
are overloaded.

Lar [9] is a DHT-based approach similar to APRE, in that it adapts in response to
current workload. Overloaded peers replicate at the query initiator and create routing
hints on the reverse path. Hints contain some other locations that the content has been
previously replicated, so queries are randomly redirected during routing. The method
takes advantage of the DHT substrate in order to place the hints. Our scheme does not
attempt to re-route queries or shed load to the initiator, but rather places replicas inside
forwarding-intensive areas using multiple paths. Moreover, the state kept is accessible
at any time, not only at the time of the query arrival.

HotRoD [18] presents a load-balancing approach for DHTs handling range queries
in RDBMSs. It is based on a locality-preserving DHT and replication of overloaded arcs
(consecutive modes on the DHT ring). [19] employes minimization function that com-
bined high availability and low load to replicate video content inside a DHT. The ap-
proach requires knowledge of peer availabilities, workload and data popularity. In [20],
the authors show that load-balancing based on periodic load statistics suffer from oscil-
lation. By directing queries towards the the maximum capacity replica store, they show
that both heterogeneity and oscillation issues are tackled. This method, nevertheless, as-
sumes prior contact of an authority server which provides with a list of existing replicas.
Moreover, replicas regularly advertise their maximum capacities to the network.

There has also been considerable amount of work on flash crowd avoidance. In
[21], overloaded servers redirect future requests to mirror nodes to which content has
been pushed. This approach does not tackle the issue of which node to replicate to.
PROOFS [22] explicitly constructs a randomized overlay to locate content under heavy
load conditions or unwilling participants. In effect, the method relies on the combination
of custom overlay creation and a gossiping lookup scheme to locate objects and does not
involve replication. Finally, the work in [23] discusses static replication in unstructured
networks, given content popularity and random walks as a lookup method.



6 Conclusions

In this paper we presented our adaptive replication scheme for unstructured Peer-to-Peer
systems based on probabilistic soft state. APRE aims at providing a direct response
to workload changes, by creating server points in needy areas or releasing redundant
servers in areas of low demand. Our approach couples lookup indices together with an
aging mechanism in order to identify query intensive areas inside the overlay. Peers
then individually decide on the time and extent of replication, based on local workload
computation.

In this work, we show that it is important to couple replication with the search
protocol in unstructured systems. Random replication performs poorly with informed
lookup schemes, unless extra state is added to enhance searches. Applying APRE over
a scheme such as APS mitigates this problem. APS-indices store local, per-object state
to direct queries to objects. While peers only keep metadata about their neighbors, this
information can be used to identify, hop-by-hop, where the queries are coming from.
Moreover, our scheme is highly customizable allowing control of both the size and the
location (as defined through reverse-indices) of replication.

Through thorough simulations, we show that APRE is extremely robust in eliminat-
ing server overloads while minimizing the communication overhead and balancing the
load. Specifically, we show that replicating along the reverse path is an extreme case of
our protocol. By effectively discovering all reverse paths, APRE manages to distribute
content proportional to demand in a variety of overlays and workloads. Finally, we show
that our method succeeds in creating a very stable server set with minimal amount of
oscillation.
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