
AGNO: An Adaptive Group Communication Scheme for
Unstructured P2P Networks?

Dimitrios Tsoumakos and Nick Roussopoulos

Department of Computer Science
University of Maryland, College Park

{dtsouma, nick}@cs.umd.edu

Abstract. We present theAdaptive Group Notification(AGNO) scheme for effi-
ciently contacting large peer populations in unstructured Peer-to-Peer networks.
AGNOdefines a novel implicit approach towards group membership by moni-
toring demand for content as this is expressed through lookup operations. Utiliz-
ing search indices, together with a small number of soft-state shortcuts,AGNO
achieves effective and bandwidth-efficient content dissemination, without the cost
and restrictions of a membership protocol or a DHT. Our method achieves high-
success content transmission at a cost at least two times smaller than proposed
techniques for unstructured networks.

1 Introduction

A multicast transmission is defined as the dissemination of information to several hosts
within a network. These hosts are interested in receiving the same content from an
authority node (such as a web server) and naturally form a group. The lack of deploy-
ment of multicast communication in the IP layer has led to the development of various
application-level multicast protocols, in which the end hosts are responsible for imple-
menting this functionality. One-to-many communication is a very useful mechanism for
a variety of network applications (e.g., [1–6]).

A number of methods have been proposed to implement multicast communication
utilizing some popular P2P overlays, e.g., [3,7–9]. Nevertheless, these approaches take
advantage of the structure that DHTs (distributed hash tables) provide. In many realistic
scenarios, the topology cannot be controlled and thus DHTs cannot be used (e.g., ad-
hoc networks or existing large-scale unstructured overlays). Other approaches require
frequent communication overhead between group members and explicit membership
protocols. These schemes often prove unsuitable because of the generated traffic for
large and dynamically changing group populations.

Today, many popular P2P applications operate onunstructurednetworks, where
peers have a local only knowledge of a network in which nodes enter and leave fre-
quently in an ad-hoc manner. For such systems, contacting large numbers of nodes is

? This material is based upon work supported by, or in part by, the U.S. Army Research Labora-
tory and the U.S. Army Research Office under contract/grant number DAAD19-01-1-0494

implemented by either broadcast-based schemes (e.g., [10, 11]), orgossip-based ap-
proaches, e.g., [4–6]. Both produce large numbers of messages by contacting many
hosts inside the network1.

In this paper, we present theAdaptive Group Notification(AGNO) method.AGNO
combines the utilization of state accumulated during the search process together with
probabilistically stored requester addresses. Our method builds its knowledge by only
monitoring the independently conducted lookups and does not require any control or
membership message exchange. Finally, we show thatAGNOachieves an efficient and
adaptive performance in a variety of environments and group sizes.

2 The AGNO Protocol

2.1 Our Framework and Overview of APS

We assume a pure P2P model, with no imposed hierarchy over the set of participating
peers. All of them may equally serve and make requests for various objects using unique
object IDs. Each peer retains its own collection which is locally maintained. Ignoring
physical connectivity and topology from our talk, we assume that peers are aware of
their one-hop neighbors in the overlay. A multicast transmission in this setting (also
referred to as thenotificationor pushphase hereafter) is initiated by an object holder
(or servernode) and its target is to reach as many group members (orrequesternodes)
as possible with the least amount of messages over the overlay. The focus of this work
is to describe an efficient mechanism for such transmissions and not to define their
content.

For our motivating example, we assume a distributed, unstructured P2P system,
where peers share and request replicated resources. Objects are assumed to be updated
often, like results of a live sports meeting, weather maps, stock quotes, real time aggre-
gated statistics, etc. There exist some nodes (similar to the web servers or mirror sites
in the Internet) that provide with fresh content, but their connectivity or availability
varies, as happens with all other network nodes. Peers that are interested in retrieving
the newest version of the content conduct searches for it in order to locate a fresh or
closer replica. In this environment, interest in a specific object is tied to the lookups
generated for it. We argue for a push-based approach, where content holders can for-
ward notifications (or other object-specific information) towards the interested hosts.
Our assumption is that peers which have recently searched or retrieved an object would
also be interested in receiving such content. For example, we can assume that a user
frequently asking for the temperature of an area would like to be informed about an
update or another object-related notification.

It is important to note here that peers still search and retrieve objects in a distributed
manner, using one of the available lookup protocols for unstructured systems. The noti-
fication itself is not necessary to be directly related to the object: A severe weather alert
to be effective in the next 3 hours is not related to the current area temperature object.
Similarly, a notification may state that node(s) hosting security-related software will be-
come unavailable soon (still not related to the objects shared). A change in quote prices

1 Due to severe space constraints, a detailed analysis of the related work appears in the accom-
panying technical report [12].

or breaking news inside a web page are, on the other hand, directly linked to the object’s
content. Group communication requires a considerable amount of bandwidth, therefore
content providers should wisely assess the importance of various updates/notifications
and choose to push those that would be the most beneficial.

The Adaptive Probabilistic Search (APS)[13] method is a search scheme for un-
structured overlays. Each node keeps a local index consisting of one entry for each of
its neighbors. These index values reflect the relative probability of a node’s neighbor to
be chosen as the next hop in a future request for a specific object. Searching is based on
the simultaneous deployment ofk walkers and probabilistic forwarding. Indices are up-
dated along the walkers’ paths according to object discovery or failure.APShas proved
to be an adaptive, bandwidth-efficient scheme which also provides for robust behavior
in dynamic environments [14]. All nodes participating in a lookup benefit from the pro-
cess, while others inherit search knowledge by proximity. Index values are refined as
more searches take place, enabling the network to build a useful soft-state.

2.2 AGNO Protocol Description

The main idea behindAGNOis to couple search knowledge with the information neces-
sary to contact interested peers. Thus, the equivalent of group membership is demand,
realized through searches and object sharing that areindependentlyconducted by peers.
The granularity can be as coarse or fine-grained as the application requires, but for the
remainder of this paper we assume that groups are formed on a per-object basis.

After each search with theAPSscheme, peers accumulate knowledge about the
relative success of a search through their neighbors. Intuitively, after a few lookup op-
erations have been conducted, overlay paths with high index values are the ones most
frequently used to connect requesters to object holders. InAGNO, nodes utilize those
indices in order to forward group messages towards possible group members during the
push phase. Note here that, although theAPSmethod is used as a means to provide with
the soft state, our approach can be used with other search mechanisms, as long as they
support a similar demand incentive.

APSkeeps an index value for each neighbor. ForAGNO, each peerP also maintains
the index values thatP’s neighbors hold relative toP. If A→ B denotes the index value
stored at node A concerning neighbor B for a particular object, then peerP must know
X → P, for each neighborX. These values can be made known toP either implicitly
or explicitly during the search phase: In the first case, peerP can infer the value of
X → P if it knows about the index update process used and the initial value. In the
explicit approach, whenever a search is conducted andX forwards toP, it piggybacks
X → P. We call these new stored values thereverse indices, to distinguish them from
the indices used byAPSin searches. For the rest of our discussion, we assume that the
explicit approach is used. Reverse indices are used by nodes during the push phase to
select which neighbors will receive the notification, but they are not the only state that
our method utilizes.

During searches, intermediate nodes decide with probabilitypr whether to store
the requester’s ID or not. For a search pathh hops long, the (ID, address) pair of the
requester will be stored onhpr peers on average. With this scheme, we create a number
of shortcuts calledbackpointersalong the search paths which point to group members.

Fig. 1. Search for an object stored at the
gray node and the push phase from this
node towards the requesters (black nodes)

t

t2t1t0 t3

R
ev

er
se

 In
de

x
V

al
ue

Fig. 2.Example of the reverse index
value update process

Each peer can individually decide on the maximum number of backpointers stored.
For simplicity, we assume that all nodes can store a maximum ofc backpointer values.
Backpointers are soft-state that gets invalidated after some amount of time.

In the push phase, a peer that receives the notification message forwards it to its
neighbors consulting the respective reverse index values. Moreover, a peer forwards
directly to each of its valid backpointers with probabilitypn. These messages have a
TTL= 1 and do not travel further. Notifications are discarded either when theirTTL
value reaches zero or if they are received by a node more than once due to a cycle.
Therefore, our scheme combines a selective, modified-BFS forwarding augmented with
direct messaging (backpointers) in order to contact group members. This is shown pic-
torially in Figure 1.

We now discuss how the aforementioned state is maintained. The backpointer val-
ues expire after a certain amount of time. Since our incentive to push a message is the
demand on a per-object basis, new backpointers replace the oldest valid ones (if a node
already hasc valid backpointers). As searches take place inside the system, the back-
pointer repositories get updated, while the probabilistic fashion in which they are stored
guarantees a diverse collection of (ID, address) pairs. Reverse indices get updated dur-
ing searches, but this is not enough: There may be peers that have searched for an object
and built large index values, but are no longer interested in receiving notifications (i.e.,
stop querying for that object). If searches are no longer routed through those peers, the
respective reverse index values will not be updated and will remain high.

To correct this situation, we add anagingfactor to the reverse indices, which forces
their values to decrease with time. Peers need to keep track of the time that a reverse
index was last updated in order to acquire its correct value before using it. When a peer
receives a search message, it sets the corresponding reverse index to the piggybacked
value and its last modified field to the time of receipt. We describe this process in Figure
2. The value of the index decreases exponentially, while two searches at timest1, t2 reset
its value. A push message received at timet3 will use the value as shown in the figure.
The last modified value is also reset when a reverse index is used, since a peer computes
its current value before using it.

2.3 Protocol Specifics

1) Space Requirements:The amount of space required by the peers isO(d+c) per
object, whered is the average node degree in the overlay andc is the maximum number

......

Thresh0 Thresh1 Thresh2 Threshn

a0 b0 b1 b2

Fig. 3.Sample binning scheme with the respective threshold values for each interval

of backpointers stored. For about 1 million objects, assumingc = d = 4, each peer
would need approximately 48MB of memory forAGNO, definitely affordable by the
vast majority of modern hosts.

2) Forwarding:Nodes use a threshold parameterThreshin order to choose to which
neighbors the notification will be forwarded. Neither the probabilistic or the top-k value
schemes are suitable, as they fail in a variety of cases. Consider for example a peer with
very low values for all its neighbors. Thresholding enables peers to forward to the most
“promising” (active in searches) parts of the overlay. A good first approximation is for
each peer to use the average of all its neighbors’ indices asThresh. Nevertheless, both
the average and the median values fail as well in various circumstances (e.g., when all
indices have a very similar low or high value).

3) Local Threshold Computation:Peers use a globally definedbinning scheme to
decide for the value ofThresh. The binning method divides the space of index values
into a number of disjoint intervals.Bini = ([ai ,bi),Threshi) is characterized by its lower
and upper limit valuesai ,bi (a0 < b0 = a1 < b1 = a2...) and aThreshi value. The final
threshold value isThresh= Threshi , if the average of the neighbors’ reverse index
values lies in[ai ,bi). Bins represent an approximation that maps reverse indices to a
value representing their quality. Higher numbered bins represent higher quality indices.
Figure 3 gives a graphic description of our binning scheme.

For smalli values we should pick few neighbors (therefore a high threshold relative
to the bin’s interval), while for largei (i.e., high quality bins), most of the neighbors
need to be chosen. As a simple heuristic for selectingThreshi , their values are chosen
such thatThreshi−1−bi−1 > Threshi−bi andThreshi−1 < Threshi , i.e., the higher the
order of a bin, the smaller its threshold value is compared to the bin’s upper limit.

4) Reverse Index Aging:Peers that lose interest in an object should be left out of
the push phase as quickly as possible. Our scheme uses an aging factorξ together with
the last modified time of each reverse index to reduce the influence of inactive ones.
Assuming indexP→ Q was last modified at timetlast, its value at timet ≥ tlast is:
P→Q(t) = (1− ξ)t−tlastP→Q(tlast), whereξ ∈ [0,1]. For ξ = 0.2, a reverse index
value will be at 80% of its last modified after one time unit.

The value ofξ dictates how aggressive our aging will be. It depends on the rate at
which requests (and therefore index updates) occur: The larger the rate of searches, the
more aggressive the aging can be. Nevertheless, it is still application-dependent, since
the rate at which notifications are issued (or even their content) largely affects the aging
factor. We defineλr ,λn to be the average rates at which a peer or server makes requests
or issues notifications respectively.

For the remainder of this paper, we assume that peers use a value forξ which sat-
isfies:(1− ξ)T maxi(Threshi) < mini(Threshi) (1). In effect, we pickξ such that any
reverse index with value less or equal tomaxi(Threshi) will be reduced below the low-
est threshold (and thus will not be selected) if not used forT time steps. In the vast

majority of cases, notifications are considerably less frequent than requests, therefore
we setT = O(1/λr). This is done in order to quickly identify and decrease idle indices
in the overlay. The maximumThreshi represents the smallest high-quality index value
in our binning scheme. Therefore, we chooseξ such that all reverse indices up to that
level of quality are discarded after a period of timeT without getting updated. Choosing
larger threshold values or smallerT values results in a more aggressive aging.

5) Estimation ofλr : In order for our scheme to work without requiring a priori
knowledge of the request rate but also to be able to adapt to changes in the workload,
we need an effective yet inexpensive mechanism to estimate its value and compute
the newξ before each push. This value is then piggybacked downstream and used by
all receiving nodes. In order to estimateλr , we need the zeroth and first frequency
moment (F0 and F1 respectively) of the request sequence arriving at a server.F0 is
the number of distinct IDs that appear in the sequence, whileF1 is the length of the
sequence (number of requests). Servers can easily monitor the number of incoming
requests inside a time interval. Many efficient schemes to estimateF0 within a factor
of 1± ε have been proposed (e.g., [15, 16]). We use one of the schemes in [15], which
requires onlyO(1/ε2 + log(m)) memory bits, wherem is the number of distinct node
IDs. In reality,m is in the order of the distinct peers withinTTL hops from a server,
since only these nodes can reach it. After each push phase, both estimates are reset and
a new estimation cycle begins.

6) Backpointer Selection:Clearly, following the same number of backpointers at
different peers and times is not efficient. Our method utilizes the local thresholding
computation to assist in the process of selecting valid backpointers. Given that a peer’s
threshold bin isi at timet, the probability with which each stored backpointer will be
followed is pni , given from the set{pn0, pn1, ...pni , ...} (i.e., onepn value for each bin).
We choose those values such thatpni > pni+1, since better quality bins forward to more
neighbors and need not waste more bandwidth. With this scheme,AGNOadaptively
balances the amount of forwarded messages per peer between the shortcuts and the
neighbors according to the current quality of its reverse indices.

3 Simulation Results
3.1 Simulation methodology and compared methods

Requesters make searches for objects usingAPSat rateλr (exponentially distributed
interarrival times), while servers initiate push transmissions at rateλn. At each run, we
randomly choose a node that plays the role of a server and a number of requesters,
also uniformly at random. Results are averaged over several hundred runs. We present
results for bothrandomandpower-lawgraphs, utilizingBRITE [17] andInet-3.0[18]
to create these overlays respectively.

The following metrics are used to evaluate the performance of a scheme: Thesuc-
cess rate, which is the ratio of contacted group members versus the total number of
group nodes and the bandwidthstress, which we define as the ratio of the produced
messages over the minimum number of messages in order to contact all members.

AGNO Parameters:Given the value of 5 as an estimate for theTTLparameter [19],
we setpr ≥ 1

TTL. Given the index update policy used byAPSas described in [13], we
employ a simple 3-bin scheme. The first bin represents indices below the initial value

0 20 40 60 80 100
searches per member

0

20

40

60

80

100

%
 o

f m
em

be
rs

 c
on

ta
ct

ed
AGNO (random)
Shortcuts(random)
AGNO (power-law)
Shortcuts(power-law)

Fig. 4. Success over variable number of
searches

0 20 40 60 80 100
searches per member

1

1.5

2

2.5

3

st
re

ss

AGNO (random)
Shortcuts(random)
AGNO (power-law)
Shortcuts(power-law)

Fig. 5. Stress over variable number of
searches

(no successes), the second those with some hits and the last those with more successes.
By default, we setc' d (which reserves an amount of space for backpointers roughly
equal to the average node degree) andT = 2Tr . Thus from (1) we have:
ξ = 1−0.440.5λr . The value ofλr (and thereforeξ) is estimated right before each server
push usingε = 0.1. A more detailed description of the parameters chosen as well as
experimental evaluations with different parameter/bin selections can be found in [12].

Compared Methods:We compare our method against 3 algorithms: The SCAMP
membership protocol [5] and the two rumor-spreading schemes in [6]:Rumor Monger-
ing (RM) and its deterministic version (det-RM), where peers have complete topology
information. In SCAMP, joining members subscribe by contacting a random existing
member. Upon receiving a subscription request, a member forwards it to all the mem-
bers in its local repository. Nodes decide probabilistically whether to store or forward
the subscription. For the unsubscription process, a node notifies the locally known mem-
bers to replace its ID with the IDs of the members it has received messages from. Group
communication is performed in the standard gossip-based manner. SCAMP is shown to
converge to a local state of slightly overlog(n) member IDs, which guarantees with
high probability that all members will receive a notification. In [6], peers that have re-
ceived a message less than F times, forward it to B randomly selected neighbors, but
only those that the node knows have not yet received it. The deterministic version of
that algorithm requires global knowledge of the overlay. Nodes forward messages to all
neighbors with degree equal to 1, plus to B remaining neighbors that have the smallest
degrees.

Finally, we also implement a pure shortcut forwarding scheme (Shortcuts), where
backpointers are stored as inAGNO, while in the push phase a peer forwards to all valid
shortcuts, using the standardTTL scheme. For SCAMP, we first run the membership
phase, in which we favor the method by assuming joining peers know all already joined
members. The parameters for those three methods are thebranching factor B, which
represents how many other peers shall be contacted per forwarding step and theseen
valueF that represents how many times a peer can receive the same message before
dropping it.

SCAMP RM det-RM
10K Random (89%,2.7) (89%,34.5) (98%,31.1)

10K Power-law(68%,2.1) (27%,13.6) (65%,10.8)
Table 1. (Success, Stress) results for the remaining methods using 500 requesters

10 100 1000 2000
group size

1

5

10

15

20

st
re

ss

AGNO
SCAMP
RM
det-RM

Fig. 6.Stress over variable group size

10 100 1000 2000
group size

40

60

80

100

%
 o

f m
em

be
rs

 c
on

ta
ct

ed

AGNO
SCAMP
RM
det-RM

Fig. 7.Success over variable group size

3.2 Basic performance analysis

In this first set of experiments, using a group of 500 requesters, we vary the number of
lookups each of them makes before a single push phase occurs. We report the results
averaged over 10,000-Node random and power-law topologies. Figures 4 and 5 present
the results forAGNOandShortcutswhich are affected by the number of searches.

We notice that the pure shortcut scheme cannot provide an efficient notification
method by itself.AGNOquickly contacts the majority of requesters after only a few
searches take place, while maintaining a low stress factor. As our scheme creates better
quality indices, there exists a slight variation in the stress. This is due to the fact that
after a certain number of queries, peers switch to a different (higher) bin on average.

In the power-law topologies, where about 34% of the peers have degree one, fewer
paths are used compared to the random graphs. This, combined to the fact thatξ = 0
in these experiments, explains why the stress forAGNOslightly increases with more
requests. The respective results for the remaining methods (not affected by searches) are
shown in Table 1.AGNOproves very accurate (in the big majority of runs) and also the
most bandwidth-efficient of the compared methods. All three rumor-spreading schemes
show considerably worse numbers in the power-law topologies.det-RMis much more
effective thanRM in such graphs, which is in accordance to the findings of [6].

Next, we measure the scalability of our method with group sizes ranging from 10
to 2,000 peers using the random topologies. Requesters make only 10 searches on av-
erage, immediately followed by a single push phase from the server. For SCAMP, the
membership protocol is run before each different group size. Figures 6 and 7 present
the results.

Our method is very successful in all group sizes, deteriorating only slightly as the
members increase. This happens because with more requesters, their average distance
from the server increases (the number of peers reachable from a node increases expo-
nentially with the hop distance). This makesAPSsearches (and its indices) less accurate
for some requesters. The RM schemes produce a similar number of messages regardless

0 100 200 300 400
time(sec)

20

40

60

80

100

%
 o

f m
em

be
rs

 c
on

ta
ct

ed lr=.2
lr=.6
lr=1
lr=6
SCAMP

Fig. 8. Success over variableλr values
(Tn = 10sec)

0 100 200 300
time(sec)

1

1.5

2

2.5

3

st
re

ss

lr=0.2
lr=0.6
lr=1.0
lr=6.0
SCAMP

Fig. 9. Stress values over variableλr values
(Tn = 10sec)

of the group size, while the closest competitor (SCAMP) has roughly twice the stress
value ofAGNO, without including the overhead of the membership phase. Our method
manages to contact a very high percentage of the members (86-99.5%) using an almost
constant message ratio over the group size.

3.3 Sensitivity toλr

Assuming a group size of 1,000 peers, we try to evaluate the performance ofAGNO
for different λr values. Figures 8 and 9 show the results. Not surprisingly, the larger
the value ofλr , the faster the increase in the success rate, since indices get accurate
faster. Another observation is that, regardless of the average request rate, our method
asymptotically manages to contact all interested peers and reach a very low stress level
(below 1.3). For most realistic scenarios (Tn >> Tr), the choice ofTn does not affect
AGNO’s performance. In the very rare cases thatTn < Tr , we just setT = O(Tn) to
achieve comparable adaptation. In all cases, our adaptive aging mechanism selects a
suitable value forξ such that the stress remains almost stable and below 1.4, half the
value of the best of the remaining schemes (SCAMP). For small request rates, peers
adapt using initially low and then higher quality bins (thus the slight variation in stress).
The smaller the value ofλr , the longer this adaptation takes.

3.4 Changes in group sizes

Figure 10 shows how our two metrics are affected by having 10%–80% of the 1,000
requesters leave the group (stop making queries) at timet = 100sec. We assume (worst-
case scenario) that all these nodes jointly and instantly decide to leave the group. In
all runs, the stress value peaks at the time of the departures, since the same number of
peers are notified but fewer are now considered as members. The size of the departing
sub-group directly affects the stress increase. The stress value instantly drops due to
our aging mechanism, but it does not reach its previous value. This is due to the fact
that a peer’s indices get updated not only when it makes a request but also when any
request passes through it. Therefore, while shortcuts for departing peers expire, indices
leading to them may still have large values, depending on the relative positions of other
requesters in the overlay. On the other hand, the success rate is hardly affected.

0 100 200 300 400
time (sec)

1

2

3

4

5

st
re

ss

dep=0.1
dep=0.2
dep=0.5
dep=0.8

0 100 200 300 400
time

0

20

40

60

80

100

su
cc

es
s

(%
)

Fig. 10.Stress and success rates when a different ratio of peers depart at time t=100sec
(λr = 1,Tn = 10sec)

150 200 250 300 350 400 450 500
time (sec)

60

70

80

90

100

%
 o

f c
on

ta
ct

ed
 m

em
be

rs

AGNO
RM
det-RM
SCAMP

Fig. 11. Success after a series of member
departures and arrivals (λr = 0.5,Tn = 10)

150 200 250 300 350 400 450 500
time (sec)

0

10

20

30

40

50

st
re

ss

AGNO
RM
det-RM
SCAMP

Fig. 12.Stress after a series of member de-
partures and arrivals (λr = 0.5,Tn = 10)

Figures 11 and 12 display the performance of the compared methods under a com-
bination of member joins and leaves. At timest = {200,350}sec, 50% of the current
group members decide to leave. Att = {250,280,300,400,420,440}sec, 50% of the
non-active requesters re-join the group. Members make requests atλr = 0.5/sec, while
the group notification phase is performed every 10 secs.

The success rate shows an instant decrease at the exact time of arrival which is pro-
portional to the number of joining peers. Nevertheless, always more than 85% of the
current members are contacted, andAGNOhas learned of their presence by the exact
next transmission. In the next push phases, the method quickly reaches its previous lev-
els. On the other hand, the value of stress is decreased after member joins and balances
the small increase that occurs after member departures. SCAMP and the two rumor
spreading schemes show big variations in the stress metric. For RM and det-RM, this
happens because of the change in the group size (same number of messages regardless
of peer membership), while for SCAMP this is due to the subscription and unsubscrip-
tion processes.AGNOcontacts the vast majority of members at a cost 1 to 10 times
lower than the closest compared method (SCAMP).

4 Conclusions

In this paper we presentAGNO, an adaptive and scalable group communication scheme
for unstructured Peer-to-Peer networks. Our method integrates knowledge accumulated
during searches to enable content-providers contact the large majority of interested
peers with very small overhead. We described in detail our adaptive mechanisms to
regulate message forwarding according to the quality of existing knowledge as well as
to ensure efficient performance in all group operations. A variety of simulations showed
thatAGNOadapts quickly to variable request rates and group sizes, being at least twice
as bandwidth-efficient as the compared methods.

References

1. Chu, Y., Rao, S., Seshan, S., Zhang, H.: Enabling conferencing applications on the internet
using an overlay muilticast architecture. In: SIGCOMM. (2001)

2. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer multicast. In:
SIGCOMM. (2002)

3. Zhuang, S., Zhao, B., Joseph, A., Katz, R., Kubiatowicz, J.: Bayeux: An architecture for
scalable and fault-tolerant wide-area data dissemination. In: NOSSDAV. (2001)

4. Datta, A., Hauswirth, M., Aberer, K.: Updates in highly unreliable, replicated peer-to-peer
systems. In: ICDCS. (2003)

5. Ganesh, A., Kermarrec, A., Massoulie, L.: SCAMP: Peer-to-peer lightweight membership
service for large-scale group communication. In: Networked Group Communication. (2001)

6. Portmann, M., Seneviratne, A.: Cost-effective broadcast for fully decentralized peer-to-peer
networks. Computer Communications26 (2003)

7. Rowstron, A., Kermarrec, A., Castro, M., Druschel, P.: Scribe: The design of a large-scale
event notification infrastructure. In: NGC. (2001)

8. Jannotti, J., Gifford, D., Johnson, K., Kaashoek, F., O’Toole, J.: Overcast: Reliable multi-
casting with an overlay network. In: OSDI. (2000)

9. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Application-level multicast using
content-addressable networks. Lecture Notes in Computer Science (2001)

10. Gnutella website: http://www.gnutella.com.
11. Kalogeraki, V., Gunopulos, D., Zeinalipour-Yazti, D.: A Local Search Mechanism for Peer-

to-Peer Networks. In: CIKM. (2002)
12. Tsoumakos, D., Roussopoulos, N.: AGNO: An Adaptive Group Communication Scheme for

Unstructured P2P Networks. Technical Report CS-TR-4590, University of Maryland (2004)
(ext. version) http://www.cs.umd.edu/ dtsouma/objects/pbroad.pdf.

13. Tsoumakos, D., Roussopoulos, N.: Adaptive Probabilistic Search for Peer-to-Peer Networks.
In: IEEE Intl Conf. on P2P Computing. (2003)

14. D.Tsoumakos, Roussopoulos, N.: A Comparison of Peer-to-Peer Search Methods. In:
WebDB. (2003)

15. Bar-Yossef, Z., Jayram, T., Kumar, R., Sivakumar, D., Trevisan, L.: Counting distinct ele-
ments in a data stream. In: RANDOM. (2002)

16. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency
moments. In: STOC. (1996)

17. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: An Approach to Universal Topology
Generation. In: MASCOTS. (2001)

18. Jin, C., Chen, Q., Jamin, S.: Inet: Internet Topology Generator. Technical Report CSE-
TR443-00, Department of EECS, University of Michigan (2000)

19. Ripeanu, M., Foster, I.: Mapping the gnutella network: Macroscopic properties of large-scale
peer-to-peer systems. In: IPTPS. (2002)

