
Efficient Updates for a Shared Nothing Analytics Platform∗

Katerina Doka
School of Electrical and
Computer Engineering

National Technical University
of Athens, Greece

katerina@cslab.ntua.gr

Dimitrios Tsoumakos
Department of Computer

Science
University of Cyprus

dtsouma@cs.ucy.ac.cy

Nectarios Koziris
School of Electrical and
Computer Engineering

National Technical University
of Athens, Greece

nkoziris@cslab.ntua.gr

ABSTRACT
In this paper we describe a cloud-based data-warehouse-
like system especially targeted to time series data. Apart
from the benefits that a distributed storage built on top of a
shared-nothing architecture offers, our system is designed to
efficiently cope with continuous, on-line updates of tempo-
rally ordered data without compromising the query through-
put. Through a totally customizable process performing
asynchronous aggregation of past records, we achieve sig-
nificant gains in storage and update times compared to tra-
ditional methods, maintaining a high accuracy in query re-
sponses for our target application. Experiments using our
prototype implementation over an actual testbed prove that
our scheme considerably accelerates (by a factor above 3)
the update procedure and reduces required storage by at
least 30%. We also show how these gains are related to the
level and rate of aggregation performed.

Categories and Subject Descriptors
H.3.4 [Information Systems]: Systems and Software—
Distributed systems; H.2.7 [Information Systems]: Database
Administration—Data warehouse and repository

General Terms
Distributed Systems, Data Warehousing

Keywords
Data Cube, Time Series, Updates

1. INTRODUCTION
Data warehousing has become a vital component of every

organization in the scientific as well as the business domain,
as it provides tools for data analysis, summarization and
prediction of future trends in areas such as retail, finance,
network/Web services, etc. The basic abstraction is the data
cube that allows for fast analysis from multiple perspectives.

∗This work was partly supported by the European Commis-
sion in terms of the GREDIA FP6 IST Project (FP6-34363).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MDAC ’10, April 26, 2010 Raleigh, NC, USA
Copyright 2010 ACM 978-1-60558-991-6/10/04 ...$10.00.

Typical workloads usually consist of read-only queries inter-
leaved with batch updates.

An important class of data is the time series data that
typically contain a time attribute, such as the date in a
stream of sales data or the time of a credit card purchase.
Such data can be presented in an even more fine-grained
manner through the use of concept hierarchies, which define
a sequence of mappings from more general to lower-level
concepts (e.g., Day<Month<Quarter<Year) and allow users
to view a given cube at different levels of granularity.

Besides the well-documented need for off-line analytics,
the requirement for data analysis in order to immediately
detect interesting trends/associations is ever-growing [4, 9].
Market globalization, business process automation, new com-
pliance regulations, etc., mandate even more data reten-
tion from companies and organizations alike as a brute force
method to reduce risk and render real-time analytics a ne-
cessity [8]. Thus, to satisfy both modes would imply the
need for an always-on, real-time data access and support
system for concurrent processing of large query rates with-
out significant deterioration in response times.

Yet, traditional data warehouses present a strictly central-
ized and off-line approach in terms of data location and pro-
cessing [12, 11]: Views are usually calculated on a daily or
weekly basis after the operational data have been transferred
from various locations. Even if some works in the field pro-
pose distributed warehousing systems [2, 1], the warehouse
and its main functionality remain centralized. Moreover, the
interpretation of time series data is crucial for monitoring a
process of interest and detecting the occurrence of certain
temporal patterns, e.g., for denial-of-service (DoS) attack or
intrusion detection [10]. To that end, constant data analysis
is required in order to detect real-time changes in trends.
However, updating existing warehouse structures is a rigor-
ous task, fact that discourages their use by applications that
require frequent on-line updates.

These challenges have given birth to the idea of creat-
ing distributed data-warehouse-like systems deployed on a
shared-nothing, commodity hardware architecture, giving
the advantage of scalability, robustness and availability at
low cost. The Cloud Computing paradigm seems an ideal
candidate platform: Scalable and often virtualized resources
are provided as a service over the Internet by large infras-
tructure companies. The particularly appealing pay-as-you-
go pricing model based on direct storage and CPU consump-
tion largely alleviates customers from the cumbersome and
expensive maintenance costs. Resource availability is typ-
ically elastic, with a seemingly infinite amount of compute

Table 1: A sample fact table with three dimensions
and one measure

DIM1 DIM2 DIM3 Measure
S1 C2 P2 $70
S1 C3 P1 $40
S2 C1 P1 $90
S2 C1 P2 $50

power and storage available on demand.
Analytical applications are particularly well-suited for the

Cloud [4]. In our efforts to provide an always-on, real-time
data access system for concurrent update and query process-
ing with fast response times we have developed the Brown
Dwarf platform, where we applied techniques from the field
of P2P computing to distribute and dynamically replicate a
data cube. However, updating such a structure is still costly,
discouraging its use under frequent updates, as in the case
of time series data.

In this work, we describe a prototype implementation of
Time Series Dwarf, a system that maintains all the charac-
teristics of applications to be deployed in the Cloud: Ge-
ographically spanned users, without the use of any pro-
prietary tool, can share information that arrives from dis-
tributed locations at a high rate in the form of time-series
and query it in different levels of granularity. Our scheme
provides two important mechanisms: First, it organizes the
cube indexing so that update costs and times are minimized.
Second, it provides an adaptive materialization scheme that
summarizes older data according to the level of detail they
are requested, in order to minimize storage consumption and
maximize query throughput. In summary, the contributions
of this paper are the following:

• A complete indexing, query processing and update system
for multidimensional time-series data over a distributed
environment where frequent updates are performed. The
cube is created with just one pass over the fact table; ag-
gregate queries can target multiple hierarchy levels, while
updates are processed on-line with a small cost in terms
of bandwidth consumption as well as time. Commodity
PCs can participate in this distributed data store, while
users need no proprietary tool to access it.
• An adaptive scheme, that adjusts the granularity of mate-

rialization utilizing the common observation that queries
over time tend to be less detailed as time progresses.
Thus, query resolution is accelerated and storage con-
sumption is minimized according to demand.
• An initial validation of the proposed system using an ac-

tual deployment on synthetic and real datasets. Our find-
ings show that our scheme considerably accelerates the
update procedure and reduces required storage according
to the level and rate of aggregation performed.

2. DWARF EVOLUTION
Dwarf [11] is an architecture for storing, querying and

updating materialized data cubes. Dwarf ’s main advantage
is the fact that it eliminates both prefix and suffix redun-
dancies among the dimension values of multiple views, thus
reducing the size of the cube. Fig. 1 shows the Dwarf cre-
ated for the fact table of Table 1: The structure is divided in
as many levels as the number of dimensions. The root node
contains all distinct values of the first dimension. Each cell
points to a node in the next level that contains all the dis-
tinct values that are associated with its value. Grey cells cor-

S1 S2

C2 C3 C1 C3C2C1

P1 $40 P2 $70 $110 P1 $90 P2 $50 $140

P1 $130 P2 $120 $250

P1 $40 $40

P2 $70 $70

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

DIM1

DIM2

DIM3

Figure 1: Centralized Dwarf for the fact table of
Table 1, using the sum aggregation function

respond to“ALL”values, used for aggregates on each dimen-
sion. Any point or group-by can be realized through travers-
ing the structure and following the query attributes, leading
to a leaf node with the answer. For example, 〈S1, C3, P1〉
will return the $40 value while 〈S2, ALL,ALL〉 will return
the aggregate value $140 following nodes (1)→(6)→(7).

While Dwarf offers many advantages, like data compres-
sion and efficiency in answering aggregate queries, it exhibits
certain limitations that prohibit its use as a solution for our
motivating problem. Besides the lack of decentralization,
recent work [6] indicated that, depending on the cube’s den-
sity, a Dwarf structure may take up orders of magnitude
more space than the original tuples. Moreover, updating
such a structure is very costly and inefficient, due to the
a-priori materialization. Therefore updates are usually per-
formed in batches. Even so, sometimes it is more efficient
to reconstruct the whole dwarf structure from scratch.

Brown Dwarf (BD for short) [7] is a system that dis-
tributes Dwarf over a network of interconnected nodes on-
the-fly, in a way that all queries that were originally an-
swered through the centralized structure are now distributed
over a P2P overlay. The general approach is that each ver-
tex of the dwarf graph (henceforth termed as dwarf node) is
designated with a unique ID (UID) and assigned to a net-
work node. Adjacent dwarf nodes are stored in adjacent net-
work nodes in the P2P layer by adding overlay links, which
represent the edges of the centralized structure. Each peer
maintains a hint table, necessary to guide a query from one
network node to another until the answer is reached. The
hint table is of the form (currAttr, child), where currAttr is
the current attribute of the query to be resolved and child
is the UID of the dwarf node the currAttr leads to. If the
dwarf node containing currAttr constitutes a leaf node, child
is the aggregate value.

Pictorially, Fig. 2 shows that nodes (1)–(9) are selected
in this order to store the corresponding dwarf nodes of Fig.
1, forming an unstructured P2P overlay, using the indexing
induced by the centralized creation algorithm. Queries and
updates are then handled using the same path that would
be utilized in Dwarf, with overlay links now being followed:
An incoming query about S1 will be forwarded to node (2).
From there, depending on the requested group-by (ALL, C2
or C3), terminal nodes (3), (4) or (5) can be visited.

The distribution of the Dwarf structure relaxes its storage
requirements and enables the computation of much larger
cubes. However, the update procedure remains costly in
terms of time as well as bandwidth.

3. TIME SERIES DWARF DESIGN
Time Series Dwarf (TSD), especially targeted to time

series data, modifies the BD structure in a way that favors
frequent updates over temporally ordered information, pro-

Figure 2: The distribution of the dwarf nodes in the
Brown Dwarf of Table 1 and their hint tables

duced in a distributed manner at a high rate and adjusts the
granularity of the materialization according to the data’s re-
cency. Apart from the benefits that the distribution of the
Dwarf offers, such as the acceleration of the cube construc-
tion, the ability to store much larger cubes and the dramatic
reduction in query response times, our system allows for on-
line, cost-efficient updates that can originate from any host
accessing the update service of the system even at very high
rates. Moreover, it makes better use of the available stor-
age and bandwidth, as the granularity of aggregation can be
adjusted, according to the application needs.

Some necessary assumptions that we believe to be rea-
sonable for our motivating scenario and justify some of our
design and implementation choices are the following:
• In a data cube, any dimension can be characterized by

concept hierarchies. For simplicity reasons we only con-
sider hierarchies for the Time dimension in our use cases.
However, our system can be generalized to support hier-
archies in any dimension.
• No updates for past events are posed to the system. Since

updates can be issued in a distributed manner by any host
accessing the service, it is possible that some of them ar-
rive out-of-order, without significant delay though, as it
is expected in time series data. To ensure temporal or-
der, the system could introduce a window of time, within
which all arriving updates will be sorted before their in-
tegration to the existing materialized structure.
• As time progresses, the temporal granularity of the posed

queries is relative to the time the query is being posed.
This practically translates to more detailed queries for
recent events, and more coarse grained queries for records
concerning past events.
Table 2 contains a sample fact table of 3 dimensions (Time,

Store, Product) and a measure of interest (Sales). It also
includes the declaration of the hierarchy imposed on the
Time dimension of the sample dataset, as well as the meta-
data that map the values of each hierarchy level to values
of the level above. As far as the notation is concerned, if N
is the number of levels of the Time hierarchy, each hierarchy
level is denoted as `i, 0 ≤ i ≤ N − 1 with `0 corresponding
to the most detailed level.

3.1 Insertion
The insertion operation refers to the initial cube creation

using historical data of the past. Time is chosen first in
the dimension ordering, while the rest of the dimensions are
placed in a descending cardinality order. As proven in the
original paper, dimensions with higher cardinalities result in

Table 2: Data and Metadata sample for our use case
Time Fact Table Metadata

Hierarchy DIM1DIM2DIM3Measure

M1 → Q1

Year M1 S1 P1 $10 M2 → Q1

↑ M1 S1 P2 $20 M3 → Q2

Quarter M2 S2 P2 $30 M4 → Q3

↑ M3 S2 P2 $40 Q1 → Y1

Month M4 S1 P1 $50 Q2 → Y1

Q3 → Y2

a smaller Dwarf cube when placed on the higher levels of
the Dwarf cube. The construction is preceded by a sort on
the fact table, as in the original Dwarf. Figure 3 depicts the
Dwarf structure according to the original algorithms for the
data of Table 2, which we present for comparison reasons.

The main difference of our system’s cube construction is
the lack of the ALL cell in the Time dimension. Tuples are
being processed one by one, first according to `0 (Month
in our example). As soon as all the values of `0 that are
mapped to the same value of `1 have been processed, our
algorithm creates an aggregate cell for that specific value of
`1. This procedure is followed for all N levels of the hier-
archy. In general, the aggregate of a value of `i is created
by calling the SuffixCoalesce routine of the original Dwarf
(see [11]), providing as input the set of Dwarfs of the `i−1

that correspond to the specific value of `i. For the sample
data of Table 2, after having created the nodes and cells for
the first two tuples according to the original cube construc-
tion algorithm, the system proceeds to the third. It then
realizes that all tuples belonging to Q1 have been processed,
thus it creates the aggregate cell and the corresponding sub-
dwarf for Q1. Similarly, upon reception of the last tuple, the
system constructs the subdwarf for Y1. The final graph cre-
ated can be seen in Figure 4. Note that the highest level of
aggregation is defined by the highest level of the hierarchy.

3.2 Querying
Queries are resolved by following their path along the sys-

tem attribute by attribute. Resolution starts from a specific
entry point, namely the network node that hosts the root
dwarf node of the distributed structure (Nroot). A node ini-
tiating a query q = 〈q1, q2 . . . qd〉, with q1 being of any `i
and qj , j 6= 1 being either a value of dimension j or ALL,
forwards it to Nroot. There, the hint table is looked up for
q1 under currAttr. If q1 is of `0 and exists, child is the next
node the query visits. The above procedure is followed until
a measure is reached. Since adjacent dwarf nodes belong
to overlay neighbors, the answer to any point or group-by
query is discovered within at most d hops. If q1 is of a level
`i, i 6= 0, the same procedure is followed if this aggregate
exists, with the answer being reached within d hops. If the
query concerns a very recent event and thus the aggregate
cell has not been created yet, the initial roll-up query must
be substituted by multiple queries of `0. Let V`0→q1 be the
set of values of `0 that are descendants of the queried value
of `i, i 6= 0. Then the requester must issue |V`0→q1 | queries
with q1 ∈ V`0→q1 and qj , j 6= 1 being the same as in the origi-
nal query, gather the results and spend some post-processing
to calculate their aggregate. In that case, the answer is at
most d · |V`0→q1 | hops and an aggregation away.

In our sample case, a query for 〈Q1, ALL, P1〉 follows the
path (1)→(6)→(7) and returns $10, while 〈Q3, S1, P1〉 is
translated to 〈M4, S1, P1〉 through the metadata informa-

S2S1 S2S2S1S2S2S2S2 S2S2S2S2 S2S2S2S2S1 S2S2S2S2S1

P1 P1 :10 :20P2 30 :50P1 50

(1)

(2)

(3)

(6)(4)

(5) (7)

(8)

(10)

(9)

(12)

(13)

(14)

:30P2 30 :40P2 40

P1 :10 :90P2 100

:70P2 70

P1 :10 :50P2 60

(11)

DIM1

DIM2

DIM3

M4M3M2M1 Q2Q1 Y1

(15)

(16)

S2S2S2S2S1

(18)

P1 :60 :90P2 150

:70P2 70

:20P2 80

(20)

(19)

P1 :60

(17)

Q3 Y2

Figure 3: Dwarf cube for the fact table of Table 2

M1 Q2 Y1Q1 M4M3M2

S2S1 S2S2S1S2S2S2S2 S2S2S2S2S2S2S2S2S1 S2S2S2S2S1

P1 P1 :10 :20P2 30 :50P1 50

(1)

(2)

(3)

(6)(4)

(5)

(7)

(8) (10)

(9) (12)

(13)

(14)

:30P2 30 :40P2 40 P1 :10 :90P2 100

:70P2 70P1 :10 :50P2 60 (11)

DIM1

DIM2

DIM3

Figure 4: TSD Cube for the fact table of Table 2

tion and returns $50 after visiting (1), (13) and (14).
The existence of a single entry point creates load imbal-

ance among the network nodes and constitutes a single point
of failure. In this work, we do not explicitly deal with load-
balancing nor fault tolerance, as we believe it is orthogonal.
An initial approach to tackle such issues is discussed in [7].

3.3 Updating
This is an important operation, as, by nature, time series

data undergo very frequent updates. Assuming that already
inserted tuples are read-only and can neither be changed nor
deleted, as the common practice in data warehouses dictates,
the update procedure translates to the insertion of new tu-
ples in the existent cube. The difference is that now the
longest common prefix between the new tuple and exist-
ing ones must be discovered following overlay links. Once
the network node that stores the last common attribute is
discovered, underlying nodes are recursively updated. This
means that nodes are expanded to accommodate new cells
for new attribute values and that new dwarf nodes are al-
located when necessary. As in the insertion case, tuples are
initially inserted in `0 and as soon as a value of `i, i 6= 0 is
complete, the specific aggregate is constructed.

The important benefit of the proposed system, compared
to the original Dwarf is that it significantly reduces the up-
date cost, due to the arrival of tuples in temporal order,
combined with the lack of an ALL cell in the first dimension.
The temporal order guarantees that the first attribute of the
new tuple will either create a new cell in the first dimension,
or it will coincide with the last cell of Nroot. Therefore, no
aggregate cell of the Time dimension will be affected. This
is not the case for the rest of the dimensions though, where
all the affected aggregates have to be recalculated.

In our example, if 〈M5, S2, P1, $60〉 arrives and M5 → Q3,
the system will create a new cell in (1) for M5 and two new
dwarf nodes for the rest of the attribute values. Besides
these three dwarf nodes accessed in total, no other node of
the system is affected. Contrarily, for the original Dwarf of
Figure 3, apart from the above mentioned changes, new sub-
dwarfs for Q3 and Y2 would be created. Moreover, following
the ALL path of the Time dimension, nodes (19) and (20)
would be updated with the newly inserted values. In total,
12 dwarf nodes would be accessed. It is thus apparent that
updates in our system are less costly, as they affect fewer
dwarf nodes and cells compared to the original Dwarf.

TSD Cubes

materialization
t ...

Time series data

Queries

Coarse

grained
Fine grained

Time

Figure 5: Materialization over time

3.4 Adaptive Materialization
The proposed system, as described above, follows a static

strategy for materialization: A roll-up view in the Time hi-
erarchy is created as soon as all required data are available,
without destroying the drill-down views, which remain in the
system. Instead, a more dynamic approach can be adopted:
A daemon process periodically and asynchronously creates
the roll-up views and erases the corresponding drill-down
ones. The period of this process is chosen taking into ac-
count the characteristics of the application. Depending on
the application, not all data are queried upon in the same
level of granularity. Indeed it is often the case that re-
cent data are demanded in a fine-grained manner, whereas
queries for historical data usually concern aggregated peri-
ods of time. Therefore, the materialization process gradu-
ally follows the roll-up path and eliminates the more detailed
views as time passes, as depicted in Figure 5.

The time thresholds beyond which a roll-up view is cre-
ated and the corresponding finer grained ones are erased are
denoted as (T`1 , T`2 . . . T`N−1). This practically means that
for records stored more than T`i the system constructs and
maintains only the aggregate views that belong to `i, eras-
ing all views from `0 to `i−1. The values of the thresholds
can either be set by the administrator a priori, taking into
account the needs of the specific application or dynamically
adjusted according to the monitored query trend.

In the case of adaptive materialization, there exists a
tradeoff between the size and the complexity of the cube,
which consequently affects update and query response times,
and the accuracy of the responses. Creating and erasing
the aggregate views periodically spares significant amount of
storage space. However, the main advantage of the method
is the acceleration of updates and the increase in query
throughput, due to the smaller overall size of the distributed
cube: Keeping dwarf nodes small helps the system navigate
more quickly through them. On the other hand, queries that
follow an opposite trend than the one expected either are
more costly, or cannot be answered accurately. More pre-
cisely, coarse grained queries concerning very recent events
that only exist in the finest granularity translate to multiple
fine grained ones. The system, apart from the bandwidth
cost, has to pay a post-processing cost as well, calculating
the aggregate of the gathered responses. On the contrary,
data that are stored according to a granularity level higher
than `0 suffer an irreversible information loss. Therefore
fine grained queries concerning them are only answered in
approximation, for instance with the ratio of the aggregate
fact to the number of distinct values of the queried level that
belong to the data aggregation level.

4. EXPERIMENTAL EVALUATION
In this section we provide an initial evaluation of our pro-

totype, entirely written in Java and deployed on 25 com-
modity nodes of our lab infrastructure (dual core, 2.0 GHz,
2GB of main memory).

Table 3: Measurements for various dataset inser-
tions size(MB) time(sec) msg/ins
Dataset#Tup.Dwarf BDTSDTSDadDwarf BDTSDTSDadBDTSDTSDad

APB-A 1.2M 56 59 53 9 485101 100 57 2.3 1.5 0.3
APB-B 2.5M 102115 93 24 957220 198 123 2.4 1.7 0.4
APB-C 3.7M 163182 146 32 1530321 289 167 2.4 1.6 0.4
DARPA 1.1M 178191 156 127 614222 208 189 5.9 5.2 1.2

In our experiments, we use both synthetic and real datasets.
Using the APB-1 benchmark generator [3] we produce three
4-d datasets (A, B and C with densities 0.1, 0.2 and 0.3 re-
spectively) with dimension cardinalities 24, 9000, 900 and 9
and one measure attribute. Time dimension consists of 3 hi-
erarchy levels, Month<Quarter<Year and covers the period
from January 1995 to June 1996. The real dataset contains
publicly available network audit data for the 1998 DARPA
Intrusion Detection Evaluation Program [5]. It includes 1
million records, collected over a period of 6 weeks and or-
ganized in 7 dimensions. The Time hierarchy is organized
along Day<Hour<Minute. The aggregate function used in
the results is sum. For the application workloads, we include
both point and aggregate queries with varying granularities
and distributions, as well as continuous updates.

Experiments are conducted using both the static and the
adaptive mode of TSD : In the former case, materialization
is performed for all hierarchy levels in a synchronous way,
whereas in the latter case, denoted as TSDad, materializa-
tion is performed through a daemon process, with thresh-
olds statically set according to the dataset: For the APB
datasets, (T`1 , T`2) is set to (1 quarter, 1 year) and for the
DARPA dataset (2 hours, 2 days). For direct comparison
we have also implemented the centralized Dwarf, as well as
its distributed approach, BD.

Cube construction In the first set of experiments we
construct the Dwarf, BD and TSD cubes to evaluate their
creation in terms of time, storage and communication over-
head. For TSDad we assume that only the aggregates that
conform to the T`i thresholds are being created in the first
place. For instance, for the DARPA dataset this means that
records of the last 2 hours are stored in the granularity of
minutes, of the last 2 days in the granularity of hours and
the rest as days. Results are presented in Table 3.

We observe that TSD noticeably reduces the size of the
created cube compared to BD (providing smaller cubes even
from the centralized Dwarf), due to the lack of the ALL cell
in the first dimension. The reduction is even more impressive
with TSDad (reaching almost 85% for the APB and 34% for
the DARPA datasets). In this case, the choice of the T`i

thresholds plays a decisive role in the cube size reduction:
The smaller the T`i , the more coarse grained the views of
the stored data, thus the smaller the cube size. In the worst
case, the size of a TSDad cube is equal to that of TSD.

Analogous to the cube size reduction is the acceleration
of creation time. First, we confirm that the distribution of
the cube leads to a better exploitation of existing resources,
enforces parallelization and thus reduces cube construction
times. TSD and TSDad exhibit a further reduction (reach-
ing 10% and 45% respectively) compared to BD. TSDad is
89% and 70% faster in storing the cube compared to the
centralized system using the APB and DARPA datasets re-
spectively. The absence of the ALL cell in Time in both cases
and the selective materialization of TSDad result in smaller
cubes with less dwarf nodes, thus requiring less communica-

Table 4: Measurements for 10k updates over various
datasets time(sec) msg/update

DatasetDwarf BDTSDTSDad BD TSDTSDad

APB-A 1123 603 404 315 21.5 9.1 8.2
APB-B 1158 611 418 323 23.1 10.3 8.8
APB-C 1203 624 424 328 25.2 10.9 9.1
DARPA 1535 649 458 380 28.6 13.6 9.3

tion and I/O cost. This is in line with the results concerning
the messages per tuple insertion.

Updates To test the behavior of TSD under continuous
updates, we apply 10k tuple insertions over the APB and
DARPA datasets and measure the total time needed to pro-
cess the update batch as well as the communication cost of
the procedure. Table 4 summarizes the results. It is worth
noting that, in the case of the static TSD, the update pro-
cess includes the creation of roll-up aggregate views, as it
happens synchronously, as soon as a hierarchy level value is
complete. On the contrary, the creation of roll-up views and
the deletion of drill-down ones are not considered part of the
update procedure of TSDad, since these are undertaken by
the daemon process and take place periodically and inde-
pendently of the updates.

Both modes of TSD drastically improve the update per-
formance, accelerating the process compared to the central-
ized Dwarf and BD. TSD is about 3 times faster than the
central algorithm and over 30% than the simple distributed
dwarf. Apart from the parallelization of the process, which
is enabled through the distribution of the cube structure,
the updates come in order, guaranteeing that no update will
affect an already created roll-up view. Furthermore, recur-
sive updates of affected ALL cells take place only in the di-
mensions other than the first, reducing the communication
cost. Indeed, the required messages per update drop almost
3 times compared to BD. TSDad proves even faster (about
20%) and more cost-efficient than TSD, due to the fact that
materialization in the various hierarchy levels is performed
asynchronously. Lastly, from the APB datasets we conclude
that the larger the cube, the more the nodes and cells af-
fected by updates, thus the more costly the process in terms
of time and messages.

Figure 6 plots the communication overhead of the TSDad

daemon process. The period of its invocation is naturally
set to the smallest of the T`i values, in our case 2 hours.
Upon its call, the daemon creates a burst in messages. These
messages are needed to create the new aggregates and erase
the finer-grained ones. However, this burst lasts only a few
minutes (less than 5) and messages are scattered over the
network, leading to tolerable per node communication cost
(∼ 100 queries

sec
for our setting).

Querying We now investigate the query performance of
TSD in both the static and the adaptive mode compared to
that of BD. Furthermore, we examine the overhead intro-
duced by the lack of the ALL cell in the Time dimension and
the information loss caused by erasing fine-grained views in
the case of TSDad.

First, over the DARPA dataset we pose 3 different query-
sets (Q1, Q2 andQ3). Q1 is a workload that ideally conforms
to the set of T`i thresholds of TSDad. Q2 is created by fol-
lowing a two-step approach. First, a tuple of the dataset is
selected using a Zipfian distribution of θ = 1.0, favoring the
most recent records. The probability that corresponds to the
selected tuple according to our zipfian distribution is used

0 2 4 6 8 10 12
Time (h)

1k

2k

3k

4k

5k

M
es

sa
ge

s

(3h, 3d)
(2h, 2d)
(1h, 1d)

Figure 6: Messages over time for the TSDad daemon

Table 5: Measurements for various workloads over
the DARPA and APB datasets

time(sec) msg/query %Inaccur. %Resp.
QuerysetBDTSDTSDad BDTSD TSDad Queries Deviation

Q1 5 6 6 6.9 6.9 6.9 0% 0%
Q2 5 9 8 6.9 9.2 9.1 15% 19%
Q3 5 24 21 6.9 32.3 32.3 33% 32%

A 13 21 19 3.8 9.3 9.3 19% 23%
B 15 23 19 3.9 9.5 9.5 21% 25%
C 16 24 20 3.9 9.6 9.5 20% 22%

to choose the level of Time that will be used in the query:
Recent records are queried upon in more detail than older
ones. Q3 follows the Uniform distribution. For all query-
sets, we set Pd = 0.1, which we define as the probability of
a dimension not participating in a query.

As seen in Table 5, workload Q1 does not affect the query
throughput nor the per query communication cost, since all
queried levels exist. However, as the queryset approximates
the uniform distribution (Q2 and Q3), the messages needed
to answer a query increase, naturally affecting the response
times. This is attributed to the fact that queries concerning
aggregates of recent data cannot be answered directly, since
these aggregates have not been constructed yet, but need to
be translated to multiple queries of a lower hierarchy level,
thus issuing more messages. TSDad proves slightly more
efficient, mainly due to the more limited size of the cube,
which allows queries to navigate faster through it.

In the case of TSDad and for the querysets Q2 and Q3, it
is possible that a query concerns a more fine-grained level of
Time that is no longer available. In such an event, only an
approximation of the answer will be returned. As a conven-
tion, TSDad replies with the corresponding portion of the
aggregate value, e.g., returns 1/12 of the value if queried for
a month and only year granularity exists. The percentage of
the queries that are answered in approximation reaches 32%
in the worse case (uniform distribution). The last column
of Table 5 contains the percentile deviation of the returned
responses compared to the correct ones. As observed, this
measure follows the percentage of inaccurate queries.

The workload posed over the APB dataset is the one gen-
erated by the APB benchmark generator. It consists of point
as well as aggregate queries in every possible dimension. The
ratio of aggregate queries on the Time dimension is 50%,
which does not favor TSD. However, the results gathered in
the lower part of Table 5 show that the slowdown compared
to BD is not significant and the percentage of inaccurate
queries lies within acceptable limits for applications toler-
ant of some degree of inconsistency.

There clearly exists a trade-off between the size of the cre-
ated cube and the accuracy of the query responses. Figure 7
depicts the effect of different T`i values on these measures for
the DARPA dataset under the workloads Q2 and Q3. The
smaller the T`i , the faster the coarse grained aggregates re-

(1h,1d)

(2h,2d) (3h,3d)

0 10 20 30
% Storage Gain

20

40

60

80

100

%
 I

na
cc

ur
at

e
Q

ue
ri

es Q2
Q3

Figure 7: Storage gain vs. % of inaccurate queries
for various T`i in TSDad (DARPA)

place the finer grained ones. This leads to a gain in storage,
yet a loss of detailed information, thus an increase in inac-
curate answers. It becomes apparent that in order to find
the golden mean, the T`i thresholds need to fit the expected
workloads. A dynamic threshold selection according to the
monitored query trend is a subject of future work.

5. CONCLUSIONS
In this paper we described a data-warehouse-like system

deployed on a shared-nothing architecture especially designed
to handle time series data produced at a high rate in a dis-
tributed manner. The asynchronous construction of aggre-
gates in various granularities according to the recency of
the temporally ordered data spares storage, while preserv-
ing a high accuracy in query responses. Results from our
prototype implementation show that our system processes
updates 3 to 4 times faster than traditional, centralized so-
lutions, while considerably reducing storage consumption.
Tuning the materialization parameters achieves the desired
balance between storage consumption and response accu-
racy. An adaptive, real-time adjustment of these parameters
relative to the posed workloads is what we currently pursue.

6. REFERENCES
[1] S. Abiteboul et al. WebContent: Efficient P2P

Warehousing of Web Data. VLDB’08.

[2] M. Akinde et al. Efficient OLAP Query Processing in
Distributed Data Warehouses. Information Systems,
28(1-2):111–135, 2003.

[3] OLAP Council APB-1 OLAP Benchmark.
http://www.olapcouncil.org/research/resrchly.htm.

[4] M. Armbrust et al. Above the Clouds: A Berkeley
View of Cloud Computing. Technical Report
UCB/EECS-2009-28, Berkeley, 2009.

[5] DARPA Intrusion Detection Evaluation.
http://www.ll.mit.edu/mission/communications/ist/
corpora/ideval/index.html.

[6] J. Dittrich, L. Blunschi, and M. Salles. Dwarfs in the
rearview mirror: how big are they really? VLDB’08.

[7] K. Doka, D. Tsoumakos, and N. Koziris. Brown
Dwarf: Distributing the Power of OLAP. Technical
report, NTUA, 2009.

[8] T. Economist. Technology: The data deluge.

[9] E. Knorr. Dealing with the data explosion, Infoworld.

[10] A. Singhal and S. Jajodia. Data warehousing and data
mining techniques for intrusion detection systems.
Distributed and Parallel Databases, 20:149–166, 2006.

[11] Y. Sismanis et al. Dwarf: Shrinking the PetaCube. In
SIGMOD’02.

[12] W. Wang, H. Lu, J. Feng, and J. X. Yu. Condensed
Cube: An Effective Approach to Reducing Data Cube
Size. In ICDE’02.

