
Adaptive Probabilistic Search for Peer-to-Peer Networks

Dimitrios Tsoumakos
Department of Computer Science

University of Maryland
dtsouma@cs.umd.edu

Nick Roussopoulos
Department of Computer Science

University of Maryland
nick@cs.umd.edu

Abstract

Peer-to-Peer networks are gaining increasing attention
from both the scientific and the large Internet user commu-
nity. Popular applications utilizing this new technology of-
fer many attractive features to a growing number of users.
At the heart of such networks lies the search algorithm.
Proposed methods either depend on the network-disastrous
flooding and its variations or utilize various indices too ex-
pensive to maintain. In this paper, we describe an adaptive,
bandwidth-efficient algorithm for search in unstructured
Peer-to-Peer networks, the Adaptive Probabilistic Search
method (APS). Our scheme utilizes feedback from previous
searches to probabilistically guide future ones. It performs
efficient object discovery while inducing zero overhead over
dynamic network operations. Extensive simulation results
show that APS achieves high success rates, increased num-
ber of discovered objects, very low bandwidth consumption
and adaptation to changing topologies.

1. Introduction

Peer-to-Peer (hence P2P) networking has been growing
rapidly in the last few years. It represents the notion of
sharing resources available at the edges of the Internet. Its
success was originally boosted by some very popular file-
sharing applications (e.g., [11]). Numerous systems that
utilize or support P2P technology have emerged since (e.g.,
[12, 16]). The P2P paradigm dictates a fully-distributed
network design which exhibits robustness in failures, ex-
tensive resource-sharing, self-organization, load balancing,
data persistence, anonymity, etc.

We can roughly classify P2P architectures into two cat-
egories:Centralizedapproaches utilize a central directory
for object location, ID assignment, etc.Decentralizedap-
proaches can either follow thepure model, with all peers
(or nodes) equally making, routing and answering requests,
or a hybrid one, where peers are divided intoleaf-nodes
andsuper-peers. The latter serve requests for their neigh-
boring leaf-nodes and shield them from the rest of the

network. Another taxonomy classifies P2P networks into
structuredand unstructured. While structurednetworks
provide strict rules for file placement and object discovery,
the most popular P2P applications operate onunstructured
networks. These approaches offer arbitrary network topol-
ogy, file placement and search. Bandwidth consumption at-
tributed to P2P file-sharing systems amounts to a consider-
able fraction (up to 60%) of the total Internet traffic [15].
Moreover, popular P2P networks display a highly dynamic
behavior, with most users connecting for small periods of
time and then leaving the system [2]. Therefore, it is vital
that search schemes be both bandwidth-efficient androbust
(showing fault-tolerance and adaptation in dynamic envi-
ronments).

A search for an object in a P2P network issuccessful
if it discovers at least one replica of the object. The ratio
of successful to total searches made is thesuccess rate(or
accuracy) of the algorithm. A search can result to multiple
discoveries (orhits), which are copies of the same object
stored atdistinct nodes.Duplicatemessages are copies of
the same query sent to a node that has already processed
it. The performanceof an algorithm is associated with its
success rate and number of hits, while itscostrelates to the
number of messages it produces.

Search methods can be categorized as eitherblind or in-
formed. In a blind search, nodes do not store any infor-
mation regarding file locations. Ininformed approaches,
nodes locally store metadata that assist in the search for
the queried objects. Current blind methods waste a lot of
bandwidth to achieve high performance. Every search re-
quires contacting many nodes within some distance called
time-to-live(TTL), generating huge overhead to all nodes
involved. Informed methods use their indices in order to
achieve similar quality results (by choosing “good” neigh-
bors to forward the query to) and to reduce overhead. The
shortcoming of most informed methods is the maintenance
cost of the indices after peers join/leave the network or up-
date their collections. In most cases, these events trigger
floodsof update messages, inflating network traffic.

Many search protocols forunstructurednetworks have



been proposed with an intention to reduce the overhead
of the original Gnutellafloodingscheme [6] (breadth-first
traversal of the underlying graph). In theRandom Walks
method [9], the requesting node sends outk query mes-
sages to an equal number of randomly chosen neighbors.
Each of these queries follows its own path, having inter-
mediate nodes forward it to a randomly chosen neighbor
at each step. These queries are known aswalkers. While
this approach manages to reduce messages by more than
an order of magnitude, it exhibits low performance due to
its random nature and inability to adapt to different query
loads.

In this paper, we propose a new search algorithm that
achieves high performance at low cost, theAdaptive Prob-
abilistic Searchmethod (APS). In APS, a node deploysk
walkers for object discovery, but the forwarding process
is probabilistic instead of random. Peers effectively direct
walkers using feedback from previous searches, while keep-
ing information only about their neighbors. As we show
in this work, APSexhibits many plausible characteristics,
namely high accuracy, low bandwidth consumption, large
number of discovered objects and robust behavior in fast-
changing environments. These features come as a result of
our algorithm’slearning character, which enables peers to
share, refine and adjust their search knowledge with time.
Furthermore,APSinduces zero overhead over the network
at join/leave/update operations.

This paper makes the following contributions:
1. We define theAPSalgorithm for search in unstructured

P2P networks. We describe the main idea, the indexing
scheme, the search and update procedures and analyze
its performance.

2. We present two improved versions of the algorithm
which exhibit significant gains in message reduction and
the number of objects discovered near the requesters.

3. We perform extensive simulations and compareAPS
with the methods in [4, 9] over different environments.
Our algorithm achieves great results in the success rate,
message production, number of hits and adaptation to
changing topologies.

2. Related Work

Structured P2P systems base all operations on an “over-
lay” network, which handles file and replica placement and
guarantees bounded number of steps and reliable storage.
Examples of such systems include [13, 14, 17]. They per-
form very efficient searches but incur big overheads during
peer join/leave operations.

Many search algorithms for unstructured P2P networks
have also been proposed in the last few years. Ref. [5]
presents a thorough categorization and description of many
approaches. Ref. [8] proposes a variation of the flooding

scheme with peers randomly choosing only a ratio of their
neighbors to forward the query to. The same procedure is
followed in [10] by nodes with no information about the lo-
cation of a file. If an object is found, the query takes the
reverse path to the requester, storing the document location
at those peers. Nodes with location information contact the
specific node directly.

Two new protocols for Gnutella-type networks operate
on hybrid overlays. InGUESS[4], searches are conducted
by iteratively contacting different super-peers and having
them ask all their leaf-nodes, until some predefined condi-
tion is met. In Gnutella2 [18], a super-peer that receives a
query from a leaf forwards it to its relevant leaves and to its
neighboring super-peers. The latter forward it to their rele-
vant leaves. No other nodes are visited with this algorithm.

In [1], the degrees of the nodes are used to guide walkers
in a power-law graph. In contrast, our algorithm uses hints
that relate to search results, aiming for both performance
enhancement and knowledge build-up.

Several informed methods have also been proposed. In
[8], each node forwards keyword requests to a set number
of neighbors that have answered the most requests “similar”
to the current one, according to a query similarity metric.
Nodes store information about recently answered queries in
order to rank their neighbors. Our approach utilizes both
positive and negative feedback from the walkers so that ef-
ficient unlearning is performed, while neighbors are proba-
bilistically chosen, not ranked.

In [19], a node holds information about all files stored
at nodes within a certain radius and can answer queries on
behalf of all of them. In [3], nodes store file content meta-
data for each of their outgoing links, enabling them to for-
ward a query to the neighbor with the highest value of a
defined metric. In our approach, nodes keep indices re-
garding only their neighbors, avoiding the cost of updates
at every change. Furthermore, our index semantics relate to
previous search results, not file locations.

3. TheAPSAlgorithm

3.1. Our Search Model

The following assumptions are made throughout the dis-
cussion that follows:

Peers initiate searches for various objects. These objects
are distributed across the network according to areplication
distribution, which dictates what objects are stored at each
node. Thequery distributiondictates how many requests
are made for each object (e.g., popular objects get many
more requests than unpopular ones). The search algorithms
cannot in any way dictate object placement and replication
in the system. They are also not allowed to alter the topol-
ogy of the P2P overlay. A node is directly connected to its
neighbors, and these are the only peers whose addresses the



Indices Initially After walkers finish After the updates
A→B 30 20 20
B→C 30 20 20
C→D 30 20 20
A→E 30 20 40
E→F 30 20 40
A→G 30 30 30

Figure 1. Search for an object stored at node F using the pessimistic approach of APS with two
walkers. The table shows how various index values change, where X →Y denotes the index value
stored at node X for neighbor Y relative to the requested object.

node is always aware of.
Nodes can keep somesoft state(i.e., information that is

erased after a short amount of time) for each query they pro-
cess. Each search is assigned an identifier, which, together
with the soft state, enables peers to make the distinction
between new and duplicate messages. Identifiers are also
assigned to objects and nodes from a flat, non-hierarchical
space. TheTTL parameter represents the maximum hop-
distance a query can reach before it gets discarded, whilek
denotes the number of walkers deployed for search from a
requester node.

Finally, the main metrics we use to evaluate the perfor-
mance of a search algorithm are the success rate, the num-
ber of discovered objects and the number of messages pro-
duced. For simplicity reasons, we ignore network and pro-
cessing delays. While such delays affect response time, they
cannot impact our metrics.

3.2. Algorithm Description

In APS, each node keeps a local index consisting of one
entry for each object it has requested, or forwarded a re-
quest for, per neighbor. The value of each entry reflects the
relative probability of this node’s neighbor to be chosen as
the next hop in a future request for the specific object.

Searching is based on the simultaneous deployment
of k walkers and probabilistic forwarding: The requester
choosesk out of itsN neighbors (ifk≥ N, the query is sent
to all neighbors) to forward the request to. Each of these
nodes evaluates the query against its local repository and
if a hit occurs, the walker terminates successfully. On a
miss, the query is forwarded to one of the node’s neigh-
bors. This procedure continues until allk walkers have ter-
minated, either with a success or a failure. So, while the
requesting node forwards the query tok neighbors, the rest
of the nodes forward it to only one. In the forwarding pro-
cess, a node chooses its next-hop neighbor(s) not randomly,
but using the probabilities given by its index values. At
each forwarding step, nodes append their identifiers in the

search message and keep a soft state about the search they
have processed. If two walkers from the same request cross
paths (i.e., a node receives a duplicate message due to a cy-
cle), the second walker is assumed to have terminated with
a failure and the duplicate message is discarded.

Index values stored at peers are updated in the following
manner: When a node forwards the request to one ork of its
neighbors, it pro-actively either increases the relative proba-
bility of the peer(s) it picked, assuming the walker(s) will be
successful (optimisticapproach), or it decreases the relative
probability of the chosen peer(s), assuming the walker(s)
will fail ( pessimisticapproach).

Upon walker termination, if the walker is successful,
there isnothing to be done in theoptimisticapproach. If
the walker fails, index values relative to the requested ob-
ject along the walker’s path must be corrected. Using infor-
mation available inside the search message, the last node in
the path sends an“update” message to the preceding node.
This node, after receiving the update message,decreases
its index value for the last node to reflect the failure. The
update procedure continues along the reverse path towards
the requester, with intermediate nodes decreasing their lo-
cal index values relative to the next hops for that walker.
Finally, the requester decreases its index value that relates
to its neighbor for that walker. If we employ thepessimistic
approach, this update procedure takes place after a walker
succeeds, having nodes increase the index values along the
walker’s path. There is nothing to be done when a walker
fails.

Figure 1 shows an example of how the search process
works. Node A initiates a request for an object owned by
node F using two walkers. Assume that all index values
relative to this object are initially equal to 30 and thepes-
simistic approach is used. The paths of the two walkers
are shown with thicker arrows. During the search, the in-
dex value for a chosen neighbor is reduced by 10. One
walker with path (A,B,C,D) fails, while the second with
path (A,E,F) finds the object. The update process is initi-



ated for the successful walker on the reverse path (along the
dotted arrows). First node E, then node A increase the value
of their indices for their next hops (nodes F, E respectively)
by 20 to indicate object discovery through that path. In a
subsequent search for the same object, peer A will choose
peer B with probability 2/9 (= 20

20+40+30), peer E with prob-
ability 4/9 and peer G with probability 3/9.

Our method utilizes “probabilistic” walkers with alearn-
ing feature that incorporates knowledge from past and
present searches to enhance future performance. The learn-
ing process adaptively directs the walkers to promising parts
of the network, while keeping bandwidth consumption low.

APSrequires no message exchange on any dynamic op-
eration such as node arrivals or departures and object in-
sertions or deletions. The nature of the indices makes the
handling of these operations simple: If a node detects the
arrival of a new neighbor, it will associate some initial in-
dex value with that neighbor when a search will take place.
If a neighbor disconnects from the network, the node re-
moves the relative entries and stops considering it in future
queries. No action is required after object updates, since
indices are not related to file content. So, although our al-
gorithm actively uses information, its maintenance cost on
any of these events is zero, a major advantage over most
current approaches.

3.3. Discussion

Each node stores a relative probability (e.g., an unsigned
integer value) for each of its neighbors for each (directly or
indirectly) requested object. So, forR such objects andN
neighbors,O(R ×N) space is needed. For a typical net-
work node, this amount of space is not a burden. On nodes
with limited storage capacities, index values for objects not
requested for some time can be erased. This can be achieved
by assigning a time-to-expire value on each newly-created
or updated index, or by expunging the least recently (or fre-
quently) used indices. Each search or update message car-
ries path information, storing a maximum ofTTL peer ad-
dresses. Alternatively, each node can associate the search
and requester node IDs with the preceding peer in the path
of the walker. Updates then follow the reverse path back
to the requester. This information expires after a certain
amount of time. A selection from the above techniques de-
pends on the application, query workload and node capabil-
ities.

Let us calculate how many messages it will take for the
APSmethod to terminate. In the worst case — all walkers
travel TTL hops and then invoke the update procedure —
the number of messages exchanged will be 2×k×TTL, so
the method has the same complexity with its random coun-
terpart. The only extra messages that occur inAPSare the
update messages along the reverse path. This is where our
two index update policies are used: If we expect or expe-

rience after a while that for a specific number of walkers
k, only few of them terminate successfully, then thepes-
simisticmode should be employed. Conversely, if many of
our walkers hit their targets on average, theoptimisticap-
proach should be considered. Naturally, the two approaches
have the same performance in all other metrics.

Along the paths of allk walkers, indices are updated so
that better next hop choices are made with bigger probabil-
ity. Our learning feature includes both positive and negative
feedback from the walkers in both update approaches. In
the pessimisticapproach, each node on the walker’s path
decreases the relative probability of its next hop for the re-
quested object concurrently with the search. If the walker
succeeds, the update procedure increases those index values
by more than the subtracted amount (positive feedback). So,
if the initial probability of a node for a certain object was
P, it becomes bigger thanP if the object was discovered
through (or at) that node and smaller thanP if the walker
failed. This is the only invariant we require from our update
process. In the next section, we compare several functions
with this characteristic. The learning process in theopti-
mistic approach operates in an opposite fashion, with neg-
ative feedback taking place after a walker fails. Our algo-
rithm exhibits bothlearningandunlearningcharacteristics:
Learningis important to achieve both high performance and
discovery of newly inserted objects.Unlearninghelps our
search process adjust to object deletions and node depar-
tures, redirecting the walkers elsewhere.

Another characteristic of the algorithm is its ability to
obtain more knowledge with more questions. The more
feedback from the walkers, the more precise the indices be-
come. That particularly suits the discovery of popular ob-
jects in the P2P network, which, according to studies [2],
constitute over 60% of all searches. Another similar obser-
vation is that all nodes participating in a search will ben-
efit from the process. This is a distinctive feature of our
method, with indices being constantly updated using search
results and not after object updates. In our case,both re-
questers and peers on the paths of all walkers actively ad-
just their knowledge about the specific object. A node that
has never before requested an object but is “near” peers that
have done so, inherits this knowledge by proximity. Be-
sides standard resource-sharing in P2P systems, our algo-
rithm achieves the distribution ofsearch knowledgeover a
large number of peers.

3.4. Algorithm Improvements

APSproduces update messages to adjust index values
along the paths of some walkers. Our goal is to minimize
these messages in order to further reduce the level of band-
width consumption. Obviously, if fewer thank/2 walkers
are successful, then thepessimisticapproach should be em-
ployed instead of theoptimisticand vice versa. Choosing



one strategy over the other for queries over all objects is not
optimal, as many unnecessary update messages would be
produced for both popular and unpopular object requests.
In swapping-APS(s-APS), the algorithm constantly moni-
tors the ratio of successful walkers for each request and ac-
cordingly switches to the update policy that produces fewer
messages. This makes ours-APSimprovement more band-
width efficient, sometimes producing a lower total number
of messagesevenfrom Random Walks, which uses no in-
dices. The number of requests for which nodes monitor the
successful walker ratio depends on available node storage,
although the overhead will be very small in most cases.

Another improvement relates to the index update pro-
cedure. The idea is to give preference to the location of
objects located near the requester nodes. Ourweightedap-
proach (w-APS) incorporates a distance-based function for
modifying the relative probabilities stored at each node. In-
dex values for peers closer to the discovered object are in-
creased more than those for distant nodes. Distance infor-
mation is directly accessible from the stored path inside the
search messages. With this method, peers are biased to di-
rect walkers to objects that are near. Our results show a
significant increase in the number of discovered objects lo-
cated near the requesters.

Both improved versions impose no extra burden to the
search process, while they aim at reducing its average re-
sponse time (either with smaller message production or lo-
cation of nearby objects).

4. Simulation Results

4.1. Simulation Methodology

To simulate the P2P overlay, we mainly used therandom
graph topology with thepure P2P model. We also exper-
imented on the popularpower-lawtopology as well as the
hybrid model for a comparison withGUESS. GT-ITM [20]
was utilized for the pure and hybrid random graph models
and Inet-3.0 [7] for the power-law graph model.

For the object replication and query strategies, we
choose from three different distributions, namely uniform,
zipf and 80/20. Requesters are randomly chosen and always
represent a noticeable fraction (around 10%) of the size of
the graph. The default graph has 10,000 nodes with an av-
erage out-degreed = 10. The default values fork andTLL
are 12 and 6 respectively.

To simulate a dynamic network behavior, we insert “on-
line” nodes and remove active ones with varying frequen-
cies. In the first setting (static), there are no dynamic op-
erations. In the less dynamic setting, the topology changes
more than 300 times during each run, while in the more
dynamic one it changes 10 times more frequently. We al-
ways keep approximately 80% of the network nodes active.

Departing nodes clear their local cache from all built knowl-
edge.

We used 100 objects in most simulations for simplic-
ity and speed. Objects are of varying popularity, which
affects the respective number of replicas and received re-
quests. An increase in the number of objects did not affect
the quality of the results. We modeled the query and repli-
cation strategies using a zipfian distribution to achieve re-
sults similar to the observations in [2]. The highest-ranked
10% of objects amount to about 50% of the total number of
stored objects and receive about half of the requests. Results
for other skewed distributions (e.g., 80/20) are qualitatively
similar. With our default parameters, the most popular ob-
ject is stored in more than 10% of the peers, while the least
popular only in 0.25% of them.

In the figures that follow, the label “APS” is used when
all variations of our method have very similar performance
in a particular metric. If the results were taken under any of
the two dynamic settings, this will be shown in parenthesis.

4.2. Choosing the index update functions

In our first set of simulations, we try to evaluate the per-
formance of several index update functions towards achiev-
ing fast unlearning and discovering the nearest objects (used
with w-APS).

On a random graph, we made queries withk = 1 from a
certain node. Only one of its neighbors initially obtained a
replica of the object. After only 10 queries, we removed this
replica and inserted another one into a random node 3 hops
away. Note that this is more challenging than simply remov-
ing the node with the initial replica. Keeping the node active
forcesAPSto consider it for future requests with the already
accumulated index knowledge. We monitored the accuracy
achieved by several functions after the deletion and present
the results for four of them in Figure 3. We evaluated a flat
update function (change indices by a set value each time),
a step function (amount of change depends on the range of
the index value), a linear function (amount of change is a
linear function of the current index value) and a hop-count
related function (as described for thew-APSmethod).

The dotted line represents the accuracy ofAPSbefore
the replica relocation (10 queries). We notice that, while all
functions “learn” with more queries, the linear function in-
creases its accuracy faster to match the initial success rate.
Both the linear and the step function that approximates it
show that unlearning is more effective if the amount of in-
dex decreaseis proportional to its value. Obviously, the
rate at which nodes (and therefore paths to objects) depart
affects the efficiency of the unlearning process.

In a similar experiment for thew-APS method, we
monitor the percentage of hits for each replica. The
flat/linear/step functions found the nearest object about 60%
of the time. A function with the amount of increase being
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Figure 2. Success rate, message production and number of hits of the two methods vs. number of
deployed walkers in the three different settings

inversely proportional to the distance raised to the power of
2 discovered the nearest replica over 90% of the time. This
function will be used to evaluate thew-APSversion.

4.3. APS performance and comparison with Ran-
dom Walks

In the next set of simulations, we try to validate the anal-
ysis of Section 3. We vary the number of walkers deployed
(k) from 1 to 15 for the default parameters and test the two
algorithms on all three settings. Figure 2 presents the de-
tailed comparison on the three important metrics (accuracy,
hits and messages per query).

Random Walksexhibits low performance as a result of
its nature. Its accuracy is below 50% for most simula-
tions, while it barely averages one hit per query in the dy-
namic settings, even with many walkers. Its message pro-
duction is further reduced during the dynamic runs, since
long paths inside the network (taken by the method’s unsuc-
cessful walkers) frequently disappear. The performance de-
crease during the dynamic runs is relatively small, as walk-
ers are not directed according to object locations, but ran-
domly across the network. For that reason, we omit its re-
sults relative to the less dynamic case.

On the other hand,APSachieves high quality results in
all these metrics. The trade-off for using its adaptive scheme
is the performance decrease in the dynamic settings.APS
manages to maintain high levels of robustness for the fol-
lowing reasons: Query forwarding is a probabilistic pro-
cess, meaning that nodes with the largest values do not get
necessarily chosen. This is important, as object locations
may change frequently and wrong next-hop choices may
occur. No neighbors are excluded because of a low proba-
bility and node failures cannot interfere with the algorithm’s
normal operation (unless a requester’s neighbors are fewer
thank, in which case all of them are chosen). Furthermore,
no more traffic for index maintenance is placed on the net-
work. Our algorithm also utilizes itsunlearning feature,
which enables walkers to be redirected if previously recov-
ered objects are missing. Finally, the probability of query
failure is greatly reduced with the use of a large number of

walkers. The changes in topology or object locations must
simultaneously affect all successful paths in order for a miss
to occur. The metric we expect to be reasonably affected is
the number of hits per search, as some paths to discovered
objects frequently “disappear”.

We can see thatAPSachieves very high success rates
even with few deployed walkers. It is steadily around 40%
more accurate thanRandom Walks. We also noticed that
w-APSshowed a small increase of around 4% in successful
searches over our standard method for the static environ-
ment. As predicted above, the accuracy is not greatly in-
fluenced by node departures. For the less dynamic run, the
amount of decrease is almost zero, while it remains within
only 5% for relatively large (k≥ 8) values.

One would expect that our method produces a much
larger number of messages compared toRandom Walksdue
to the update process, but this is not the case: The majority
of walkers inAPSare successful and only few of them reach
TTLhops away. InRandom Walks, about 70% of the walk-
ers fail and wasteTTL messages each. To a lesser extent,
objects are equally discovered at all possible distances in
the random method, while our scheme discovers more ob-
jects closer to the requesters. The results confirm our case:
The difference in messages is about 15 for thepessimistic
approach, which proves that a single update policy is not
suitable for all ranges of requests. Thes-APSimprovement
has the same very low production as the random algorithm.
This effect is enhanced if we recall that no message ex-
change is necessary for peer join/leave/update operations.
Only in the highly dynamic setting do we see an increase
in the average production, which is at most 5–7 messages.
This gap appears because of the frequent broken paths to
objects, causing walkers to travel more inside the network.

The last graph in Figure 2 depicts the average number
of discovered objects per query.APSputs the walkers to
a much better use, discovering around 4 times as many
objects as its competitor. This is extremely important for
current popular P2P applications, giving the user a much
broader choice for download. This characteristic comes as a
result of its high success rate and very few walker collisions
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(our results showed a reduction of 1 to 2 orders of magni-
tude in duplicate messages compared toRandom Walks). In
the dynamic settings, the maximum reduction in the num-
ber of hits is around 25% and 40% for the less dynamic and
more dynamic runs respectively. These numbers occur for
large values ofk, where the probabilitity of node departures
affecting the walkers increases.

Figure 4 shows how the hits are distributed over their dis-
tance from the requesters, for the default parameters (static
setting). WhileRandom Walksdiscovers about the same
amount of objects throughout the 1 toTTL range,APSis
more biased into the first half of this range. Thew-APS
technique significantly improves on this characteristic, trad-
ing distant objects (hops 4 to 6) with closer ones (hops 1 to
3). The majority of discovered objects are now found with
few messages, while fewer objects are discovered with more
messages. The results for dynamic settings are similar, the
only difference being the reduction in hits we saw before.
We also noticed that our algorithm becomes more biased
into discovering nearby objects as the number of replicas
inside the network increases. This happens because the
walkers have a broader selection of paths to objects and can,
therefore, choose the shortest.

Figure 5 displays how the number of requests affects ac-
curacy. With just 1% object replication ratio,k = 10 and
TTL= 5, we varied the number of requests per object us-
ing a uniform distribution for both storage and requests on
the default graph. We can see that the accuracy of our
method improves significantly with only a small increase
in requests. At the same time,Random Walksis steadily
below 40%, regardless of the number of requests.

4.4. Results for more environments

In this section, we compares-APSwith Random Walks
over four different graphs: The default one, a 10,000-node
random graph withd = 4 (similar to Gnutella-type graphs),
a 50,000-node random graph withd = 10 and a 10,000-node
power-law (PLAW) graph withd = 4.4. Table 1 presents the
two algorithms’ performance in the highly dynamic setting

with the respective results from the static runs in parenthe-
ses.

First, we test the methods using a uniform distribution
for both requests and storage in the default graph. The repli-
cation ratio for each object is set to 1% and each of them
receives 30 queries by each requester node. We clearly no-
tice thats-APSgreatly benefits from such a setup, deliver-
ing over 94% in success rate (a mere 2% decrease from the
static run) and discovering more than 10 times more objects
thanRandom Walks.

On a similar graph with smaller out-degree andk = 5,
s-APSis still 40–50% more accurate, 5 times more effec-
tive in locating objects and almost as bandwidth-efficient as
the random method. The results are worse compared to the
default graph because of the smaller out-degree and fewer
walkers used.

Our simulations on the 50,000-node random graph jus-
tify our prediction that the graph size cannot influence the
performance ofAPS. The results were a little worse from
the ones in the original graph, because the quality of the
new graph was worse (many more disconnected compo-
nents were present). We notice the success rate is about 8%
lower from the static case, while the number of discovered
objects is almost halved.

Our results on the 10,000-node power-law graph show an
even greater gap in the performance of the two algorithms.
Our method delivers about 4 times more results and exhibits
a success rate three times bigger thanRandom Walks’. The
success rate fors-APSdrops by around 9% and discovered
objects decrease by 37%, while message production slightly
decreases.

In these simulations, our method kept its message pro-
duction at the same levels with the static runs, wasting at
most 5 extra messages per search, a direct proof that it does
not impose more burden on network traffic. As expected,
the success rate shows only a small decrease, from 2% to
12%.APSexhibits remarkable robustness even in such fast-
changing environments. These results also show that our
method maintains its relative performance gains over the



Table 1. Results for more environments
s-APS Random Walks

Graph-Distr. Succ% Mesg Hits Succ% Mesg Hits

10K-Rand 94.1 58.5 4.3 32.3 41.8 0.4
(d=10,Unif) (96.1) (53.5) (7.2) (38.2) (49.6) (0.5)
10K-Rand 70 17.3 1.4 26.0 12.0 0.3
(d=4,Zipf) (82.2) (18.2) (2.25) (34.5) (15.0) (0.5)
50K-Rand 79.3 48.4 2.4 55.6 39.5 1.3
(d=10,Zipf) (87.6) (47.0) (5.7) (57.6) (45.7) (1.4)
10K-PLAW 67.6 13.0 1.11 21.0 9.0 0.3
(d=4.4,Zipf) (76.1) (14.9) (1.76) (31.6) (12.0) (0.5)

different environments.

4.5. Comparison with GUESS

Lastly, we present results comparings-APSwith an im-
plementation ofGUESS[4] on a randomhybrid graph with
6500 peers, 500 of them being super-peers. Each super-
peer is connected to 12 leaf-nodes on average. Links exist
only between super-peers and between an super-peer and its
leaf-nodes. In ourGUESSimplementation, initiating super-
peers forward queries tok randomly chosen neighbor super-
peers. Query and replication distributions are set to their
default values. Since it is impossible to directly compare
the two methods for the samek and TTL values, we se-
lect simulations where the two algorithms had similar per-
formance in one of two important metrics: Messages and
hits per query. The results are presented in Table 2 and the
comparison metric is typed in boldface. For similar mes-
sage consumption, our scheme exhibits higher success rates
and delivers 4 to 5 times more results. For similar hits per
search, our scheme produces 4 to 5 times fewer messages
and always outperformsGUESSin accuracy.APSachieves
these results taking no advantage of the hybrid topology that
GUESSutilizes.

5. Conclusions

This paper presentsAPS, an adaptive search technique
for unstructured P2P networks.APSdeploys probabilisti-
cally directed walkers by utilizing information from past
searches. This allows for fast, joint learning, while being
extremely bandwidth-efficient. Peers are required to keep
indices only relative to their neighbors, while no message
exchange is necessary for any dynamic network event, lo-
cal or global. Our simulations on a variety of environments
demonstrated the versatility of the proposed technique. Re-
sults show thatAPSachieves high performance being al-
most as bandwidth-efficient asRandom Walks. It discovers
4 times as many objects and delivers very high success rates
compared to theRandom WalksandGUESSmethods. Fi-
nally, we demonstrated our algorithm’s ability to maintain

Table 2. Comparison with GUESS
s-APS GUESS

Metric Succ% Mesg Hits Succ% Mesg Hits

97.7 16.3 5.22 63.9 16.1 1.28
Messages 98.6 22.0 7.01 65.6 22.2 1.87

99.7 33.2 11.39 84.0 33.1 2.55
81.0 3.2 1.33 63.9 16.1 1.28

Hits 94.6 8.7 3.42 86.4 45.0 3.70
97.9 16.5 5.42 94.5 65.1 5.60

these features even in rapidly changing environments, ex-
hibiting a high degree of robustness.
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