Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

THENNTEBNATIDNAL JDOUBRNALIOE

FiBICic

GRIDEEOIVIPUNING:

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Future Generation Computer Systems 25 (2009) 426-435

Contents lists available at ScienceDirect L F%EIGI;_!
Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs S

A grid middleware for data management exploiting peer-to-peer techniques”

Athanasia Asiki*, Katerina Doka, loannis Konstantinou, Antonis Zissimos, Dimitrios Tsoumakos,

Nectarios Koziris, Panayiotis Tsanakas

Computing Systems Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Zografou 15773, Greece

ARTICLE INFO ABSTRACT

Article history:

Received 15 January 2008

Received in revised form

18 August 2008

Accepted 11 September 2008
Available online 30 September 2008

In this paper, we describe a service-oriented middleware architecture for Grid environments which
enables efficient data management. Our design introduces concepts from Peer-to-Peer computing in order
to provide a scalable and reliable infrastructure for storage, search and retrieval of annotated content.
To ensure fast file lookups in the distributed repositories, our system incorporates a multidimensional
indexing scheme which serves the need for supporting both exact match and range queries over a group

of metadata attributes. Finally, file transfers are conducted using GridTorrent, a grid-enabled, Peer-to-Peer

Keywords:

Grid architectures and systems
Peer-to-peer systems
Middleware

Multidimensional indexing
Information storage and retrieval
Data management

annotated content.

mechanism that performs efficient data transfers by enabling cooperation among participating nodes and
balances the cost of file transfer among them. The proposed architecture is the middleware component
used by the GREDIA project, in which both media and banking partners plan to share large loads of

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Due to the explosion of network technologies and the impres-
sive growth in the performance of computing systems, there is
an increasing trend to apply high-performance and cluster-based
techniques in completely distributed environments. One challenge
is to achieve maximum utilization of idle computational cycles.
Another challenge is to establish a global-scale data management
scheme providing the required protocols and algorithms for shar-
ing, searching and transferring data among geographically dis-
tributed resources.

Grid computing [1] focuses on studying distributed infrastruc-
tures, where users share geographically distributed resources inte-
grated under a common middleware. It adopts the principles of the
software model called Service Oriented Architecture (SOA) and pro-
vides seamless access to services deployed in a distributed manner.
The basic characteristic of these systems is the existence of explic-
itly defined rules and policies to enable flexible, secure and coordi-
nated resource sharing among dynamic virtual collections of users,
named Virtual Organizations (hence VOs).

 This work was partly supported by the European Commission in terms of the
GREDIA FP6 IST Project (FP6-34363).
* Corresponding author. Tel.: +30 2107722867, fax: +30 210 7721292.
E-mail addresses: nasia@cslab.ece.ntua.gr (A. Asiki), katerina@cslab.ece.ntua.gr
(K. Doka), ikons@cslab.ece.ntua.gr (I. Konstantinou), azisi@cslab.ece.ntua.gr
(A. Zissimos), dtsouma@cslab.ece.ntua.gr (D. Tsoumakos),
nkoziris@cslab.ece.ntua.gr (N. Koziris), panag@cs.ntua.gr (P. Tsanakas).

0167-739X/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.09.005

Another form of distributed computing is expressed by Peer-
to-Peer (hence P2P) computing, which deals mainly with the
sharing of large amounts of data over the network. Many P2P
applications already exist for file sharing among an increasing
number of users, gaining interest in the large Internet and
scientific community. These applications are characterized by
their decentralized nature and their unsupervised operation
dynamically adjusting to node arrivals and departures. The above-
mentioned features contribute to extensibility, resilience to faults
and higher system availability. However, the distributed nature
of P2P systems and the lack of centralized structures require
an efficient object location mechanism. This mechanism should
be capable of adapting to changing network topologies, while
maintaining high lookup performance. Thus, much effort has been
placed to the development of indexing methods for efficient search
mechanisms.

As mentioned above, the peers in a P2P system are organized
dynamically and without the existence of centralized structures.
Anonymity is also another important issue in such systems as far
as the identities of resource providers and information requesters
are concerned. These features seem contradictory to the “strict”
structure of Grid systems, which takes into account administrative
and organizational boundaries. However, there is a growing trend
of introducing P2P techniques and algorithms for efficient data
management in Grid environments. EXxisting services, such as
the Data Transfer service, responsible for file transfers among
nodes (e.g., using the GridFTP protocol) or the Replica Location
Service (RLS), keeping track of the physical locations of files,
can be designed and developed according to the P2P philosophy.

A. Asiki et al. / Future Generation Computer Systems 25 (2009) 426-435 427

These enhancements lead to more scalable, fault-tolerant and self-
organized solutions.

Our target applications require the management of annotated
multimedia content. Information from multimedia applications
bombards our daily life and is produced by the majority of scientific
and business applications. Large amounts of audiovisual data are
becoming available on the World Wide Web, in broadcast data
streams, in personal and business databases. However, multimedia
files contain a lot of information that is difficult to organize. Thus,
their utility depends on the existence of efficient mechanisms for
discovery, filtering and managing this type of content.

In this paper, we present a service-oriented middleware
architecture for data management in Grid environments. The
provided services enable the efficient search, discovery and
transfer of annotated multimedia content. The annotations are
either provided by the user or generated automatically by the
system.

Searches for the stored content are supported at two different
levels. At the first level, a user can perform advanced searches
over the annotations based on a predefined metadata schema.
At the second level, a data item can be searched according to
its unique identifier, which is stored in a distributed catalogue,
containing mappings of unique identifiers of files to their physical
locations. The search facilities are accommodated by P2P overlays
using Distributed Hash Tables (hence DHTs). Lookup operations
for specific data items benefit from the structure of DHT systems.
However, their utilization is more complicated and costly as far as
queries for range values and multiple attributes are concerned, in
terms of messages and maintenance effort required by additional
indexing mechanisms. To support the processing of complex
queries, we have proceeded in modifications of the placement of
data and the query routing in DHTs.

The proposed data transfer mechanism combines the cooper-
ative sharing enforced in the BitTorrent protocol [2,3] with the
GridFTP [4] protocol used in Grid environments. Despite improve-
ments in the GridFTP protocol, it remains a centralized mechanism,
unable to cope with flash crowd situations, when the number of
potential clients and the volume of data increase. The allocated
bandwidth to each data transfer in progress depends on the num-
ber of active connections in the GridFTP server, which becomes the
bottleneck of the system. This transfer mechanism cannot take ad-
vantage of the already transferred data pieces among the partici-
pating nodes. In that case, nodes having completed the download
of a data piece are unable to serve this piece to other nodes asking
for it. The proposed scheme is based on the BitTorrent protocol, al-
lowing the concurrent download of file pieces from several storage
nodes while uploading the already downloaded ones as well. All
participants cooperate in sharing data already transferred to them
and aggregating their bandwidth optimizing the overall transfer
rate.

Our design is completely decentralized, requiring no form of
centralized communication among different types of services. Our
middleware provides transparent services for efficient data search,
discovery and transfer of annotated content. Our interest in the
proposed architecture is based on the belief that it would provide
users manipulating such content with the necessary services to
build a promising Grid infrastructure, while it can be integrated
with other systems and existing middlewares.

The rest of the paper is organized as follows: Section 3 addresses
some general issues and requirements regarding the design of
a large-scale system intending to manage annotated content.
Section 4 presents an overview of the proposed architecture.
Section 5 introduces a multidimensional scheme for metadata
search. In Section 6, the implementation of a distributed DHT-
based catalogue is analyzed. Section 7 describes a data transfer
mechanism based on the BitTorrent protocol. Section 8 refers to

the sequence of logical operations during insertion and search
of data. Finally, Section 9 refers to some issues occurring during
the implementation phase and Section 10 contains concluding
remarks as well as outline directions for future research, involving
possible extensions of our work.

2. Related work

Data Grids are wide-area distributed infrastructures of hetero-
geneous resources capable of managing immense amounts of data.
The core services for accessing heterogeneous storage resources,
storing, transferring and searching large datasets are described
in [5].

A fundamental building block of the Data Grid architecture is
the data transfer mechanism among storage nodes. The established
protocol is GridFTP [4], a protocol defined by the Global Grid
Forum and adopted by the majority of the existing middlewares.
GridFTP extends the standard FTP protocol including features like
Grid Security Infrastructure (GSI) [6] along with third-party control
and data channel. A more distributed approach of the GridFTP
service attracted the attention of the Grid community leading to
the Globus Stripped GridFTP protocol [7], included in the current
release of Globus Toolkit 4 [8]. The new features added to the
GridFTP protocol support transfers of data striped or interleaved
across multiple servers, partial file transfers and parallel data
transfers using multiple TCP streams. However, the GridFTP
protocol remains a centralized mechanism accommodating only
server-client data transfers. This fact implies that a limit exists
for concurrent transfers and GridFTP is unable to cope with flash
crowd situations.

In Data Grids, the availability of data and the efficiency of
data transfers depend on the number of existing file copies. These
copies are called replicas and are distributed among resources.
The physical instances of a file are located by the Replica Location
Service, which interacts with a Replica Catalogue containing
mappings between Logical FileNames (LFNs) and Physical FileNames
(PENs). The main drawback of the initially implemented RLS
architecture was its centralized structure, which posed limitations
to the scalability and the resilience of the system. Efforts on
distributing the catalogue were the consequent step. They resulted
in Giggle (Giga-scale global location engine) Framework [9,10],
the most widespread solution currently deployed on the Grid
concerning the management of replicas. It deploys an RLS
architecture consisting of several global and local services in a
multi-tier hierarchy. Giggle utilizes Local Replica Catalogues (LRCs),
maintaining mainly mappings of LFNs to PFNs across a site,
and global Replica Location Indices (RLIs) maintaining information
about the catalogues and the associated LFNs. However, the
updates in the LRCs induce a complex and bandwidth-consuming
communication scheme between LRCs and RLIs.

The existence of efficient Metadata services plays an important
role in data publishing and searching. In [11], Deelman et al.
emphasize the need for services responsible for handling metadata
descriptions of data objects. Their claim is being justified by
real use cases from the scientific community. They introduce
a Metadata Catalogue Service (MCS) implemented on top of a
database. The scalability of the system relies on the extension
of OGSA-DAI [12] to interact with the MCS. Nevertheless, the
centralized metadata servers remain the bottleneck of the system,
when the number of metadata and performed searches increase.

On the other hand, the P2P approach provides a scalable
alternative solution to the conventional server-client approach.
Depending on their structure, P2P systems are divided into
three categories, namely structured, unstructured [13,14] and
hybrid [15,16]. The model followed to build a structured overlay
is the construction of a Distributed Hash Table (DHT), as in overlays

428 A. Asiki et al. / Future Generation Computer Systems 25 (2009) 426-435

of Chord [17], Pastry [18], Kademlia [19], CAN [20], etc. Data items
and nodes are assigned a unique identifier (ID) called key, which is
usually generated by a hash function applied over their contents
and addresses respectively. Keys are used during insertion and
lookup of data items in the DHT overlay. During an insertion, a
data item is forwarded among the nodes of the overlay, so as to
be stored in the node with the closest ID to its key. The notion of
distance is defined by a metric specified by the P2P protocol. The
main advantage of DHT-based systems is that if a key exists in the
overlay, their lookup algorithm guarantees to find it. The lookup
cost is bounded to the logarithm of the search space, namely the
number of nodes participating in the overlay.

An approach followed to predetermine data placement is the
utilization of Locality Preserving Hash Functions. The generation of
IDs based on Space Filling Curves (SFCs) falls into this category,
since indexing methods based on SFCs map points from a
multidimensional space into one dimension, while they tend to
preserve locality. In Squid [21] and SCRAP [22], the set of attributes
describing data items are considered to form a d-dimensional
space. Each combination of their values represents a point in this
space. The key to be used in the DHT is produced by the mapping
of the point in a single dimension based on an SFC, such as the
Hilbert curve or the Z-curve. Multidimensional indexing with SFCs
is introduced in the CISS framework [23] as well. The Hilbert curve
has been chosen by the authors due to its clustering properties.
The critical point in using an SFC-based as a hash function is the
consequences regarding the load balancing of the system.

In traditional DHTs, keys are produced randomly by a crypto-
graphic hash function and thus distributed uniformly to all nodes.
SFCs preserve locality by placing in close nodes data with similar
attributes, against the uniform distribution of load among nodes.
To avoid imbalance, Squid relies on the fact that the d-dimensional
keyword space is sparse and so the data items are assigned to
peers roughly in the same way. SCRAP faces this problem with
Skip Graphs [24], a popular solution for range queries in DHTs. The
authors of CISS propose that nodes which are heavily loaded can
deal with the problem locally by giving part of their key ranges
to their neighbors or globally by finding a lightly loaded node in
the system.

Towards the efficient processing of complex and range queries,
additional indexing mechanisms have been proposed. These
structures are usually distributed trees formed with indices
maintained among the nodes of the overlay. This is the case
for the distributed tries introduced in [25-27]. Tries are prefix
trees suitable for storing and processing strings. They are used
for searching key ranges according to their common prefix.
The Prefix Hash Tree, [25] is a distributed trie indexing binary
strings based on their common prefix. The entire keys are stored
in leaf nodes, which are mapped onto peers of an underlying
DHT. The P-Grid [26] incorporates the trie structure in the
routing mechanism of the proposed overlay. The Distributed Lexical
Placement Table (DLPT) [27] is a dynamically constructed trie for
indexing, enabling service discovery. Another similar approach
for supporting complex queries in a large-scale distributed
environment is the IMAGINE-P2P platform [28], which forwards
the queries to be processed along semantic paths of an index. A tree
index is constructed on top of a semantic overlay which contains
semantic relationships among data items stored in a Chord DHT.

2.1. The Kademlia DHT overlay

The DHT-based overlays in our architecture are implemented
with a modified version of the Kademlia protocol [19]. Both data
items and nodes are assigned unique identifiers from a unified
address space. Items to be inserted in the DHT are (key, value)
pairs, where the value is the data item to be stored to the node

with the closest ID to the key. The notion of distance between
points in the identifier space is defined by the XOR metric. The
Kademlia protocol locates data items based on their keys, only
if these keys are known in advance. The query messages are
routed in the overlay according to the information that each node
maintains for other peers. This information is acquired by the
messages that a peer receives. The symmetric feature of the XOR
metric allows Kademlia participants to receive lookup queries from
roughly the same distribution of nodes in their routing tables.
Kademlia appears as an appropriate selection due to its simple
routing table structure and its consistent algorithm throughout the
lookup procedure.
The basic RPCs of the Kademlia protocol are:

FIND_NODE: This operation returns the kappa closest nodes to
the target ID that the recipient node is aware of, where
kappa is a system parameter.

FIND_VALUE: When anode of the Kademlia network is instructed
to lookup a value in the network, it issues « parallel
queries (FIND_VALUE) to the closest nodes it is aware
of. A reply will be the value or routing information in
the form of even closer nodes to the target key. The
process continues until either the value or the kappa
closest nodes to the target key are found. The system
wide parameter kappa also specifies the number of copies
maintained for each data item, and controls the size of
routing tables in peers. Both « and kappa variables are
set at each participant node and affect only local service
performance.

STORE: At first, the node initializing the STORE operation
calculates the key for this data item, usually a hash
over its content. Then, it searches the network in several
steps, until the closest nodes to that key are discovered.
Afterwards, the data item is stored in these nodes.

PING: This RPC probes a node to see if it is online.

3. Challenges and requirements

The design of a generic middleware for efficient search and
retrieval of annotated content in a distributed Grid environment
has been largely motivated by the requirements posed by
the GREDIA research project [29], supported by the European
Committee. GREDIA’s main objective is the development of a
Grid application platform, providing high level support for the
implementation of Grid business applications through a flexible
graphical user interface. This generic platform will facilitate the
provision of business services, which mainly demand access and
sharing of large quantities of distributed annotated numerical
and multimedia content. Furthermore, the GREDIA platform will
exploit Grid technologies to enable access to the distributed
content by mobile devices. A user may access the platform in order
to upload content or perform searches.

The design and the implementation of such systems face
several challenges. The most crucial one is the development of
a distributed architecture for managing large amounts of data
stored in geographically distributed resources. The efficiency of the
system should not decline when the amount of stored data and the
number of performed operations increase. The system should scale
well, providing reliable and concrete services.

Regarding the publishing and discovery of content, the users of
the system should be able to perform both exact match and range
queries. The answer to a range query concerns a group of data
having a common characteristic. For example, a user may ask for
a data item specifying its author, subject and requiring its creation
to be within a specific time interval and results satisfying this
criterion should be returned. However, it is difficult to handle range

A. Asiki et al. / Future Generation Computer Systems 25 (2009) 426-435 429

/

Application

I

[

[Layer

: Metadata

! Client

: XML for Metadata description

[

| <?xml version="1.0" encoding="UTF-

\ S o B 8" standalone="no"?>

N e =
H <Metadata>
& <keyword> sea </keyword>

_____________________ S| ___ <author> Smith </authors
- b itle > St d Sea </itl
Middleware for 8 =te> Stn and Jen. sl e

= Metadata file

Data Management

Data
Client @

Metadata overlay

Metadata

DRLS overlay

XML for DRLSMetadata

description
<?xml version="1.0" P

encoding="UTF-g"~ |~~~ T T TTTTTTTTTTTT
standalone="no"?>

<DRLSMetadata>

<uid> Unique Identifier</uid >
< filesize> 2621440 </filesize>

Fig. 1. Overview of the proposed architecture.

queries without centralized catalogues for indexing. Provisions
should be made so that range queries are processed by a small
number of nodes.

Finally, the deployment of a unified framework accessing
heterogeneous resources and transferring large amounts of data
is very challenging. Bandwidth limitations should be considered,
especially when a node has to serve multiple concurrent requests
for popular files.

4. Architecture

The proposed architecture deals with data management in
a distributed environment consisting of resources belonging to
different Virtual Organizations. A main characteristic of this
environment is the heterogeneity of resources in terms of
computational power, storage capacity and bandwidth. Resources
with different features, for example laptops, desktop computers,
dedicated servers or even mobile phones, may participate in this
platform. Moreover, we assume that some resources may remain
off the system for long periods of time. Therefore, the design
should cope with node arrivals and departures to provide a robust
operation.

The proposed architecture is layered and comprises of three
different overlays, as shown in Fig. 1. These overlays are:

o The Storage overlay, where the multimedia content is stored
and the data transfer mechanism is implemented. The nodes in
the Storage overlay act as file servers and should provide the
corresponding services persistently.

e The Metadata overlay, where the metadata description of each
file is stored and retrieved. This overlay provides a powerful
search mechanism supporting not only exact match queries but
range and complex queries as well.

o The Distributed Replica Location Service overlay (hence DRLS),
which maintains a list of useful information needed during data
transfers in the Storage overlay. This overlay also acts as a link
to correlate metadata descriptions to their corresponding data.
It implements a distributed catalogue containing mappings of
Unique IDentifiers (UIDs) to the physical locations of data files
represented by Physical FileNames (PFNs).

Each node of the platform is allowed to participate in more
than one overlay depending on its available storage space and
the services it can host. The Metadata and the DRLS overlays
are implemented according to the Kademlia protocol. Nodes with
close IDs in the ID space are considered neighbors without being
physically close as well. As shown in Fig. 1, each overlay interacts
with the corresponding clients and the other overlays through
Grid services. These services are the Data service and the Metadata
service, deployed in the nodes of the Storage and Metadata overlays
respectively.

Multiple overlays introduce extensibility and robustness to the
system. The implemented services of each overlay are autonomous
entities. The goal of our design is to provide portable and flexible
services, which can be used either to accomplish a specific purpose
or integrated in a more generic middleware. The interaction
with other services occurs through well-defined interfaces. The
execution of the services is transparent to the user, who only needs
to know an endpoint to the provided service and not its various
instances.

The data items handled in our system can be divided into two
categories, namely the data files and the metadata files. A data
file contains the actual content, which is stored and replicated in
the Storage overlay. Each data file is described with attributes of
a predefined metadata schema and their values are included in
its metadata file. The metadata files are stored in the Metadata
overlay, in different nodes from their data files. The link among
these files is the UID attribute. The value of this attribute is the
hash of the data file’s content and is included in its metadata file.
The DRLS overlay plays an important role, since it contains the
mappings of UIDs to the physical locations of data files. Given a
metadata file, a lookup operation for its UID in the DRLS overlay
should be made in order for the corresponding data file to be found.
The DRLS DHT stores (key, value) pairs, where the key is the UID of
the data file. The value is an XML file containing mainly the physical
locations of replicas.

These overlays store data belonging to users of different Virtual
Organizations (VOs). We assume that the authorization process is
carried out by another middleware component, which is beyond
the scope of the described middleware services. This component
rephrases the user’s query according to his/her VO membership.

430 A. Asiki et al. / Future Generation Computer Systems 25 (2009) 426-435

The result is that a data file can be stored or searched in a storage
node, only if the user is granted the appropriate permissions in the
node that his/her request arrives.

5. Exploiting a multi-dimensional indexing scheme in the
metadata overlay

The Metadata service hosted by the Metadata overlay provides
a search mechanism for the stored annotations of the multimedia
content. Each data file is described by a set of metadata attributes.
These attributes follow a predefined Metadata schema designed
according to the needs of the users. The annotations are included
in the metadata files. For example, an image can be tagged with
attributes such as title, location, topic, keywords, creator name,
duration, date, format, size. Some of these attributes (size, format,
type, date) can be automatically completed by the Metadata client.
The rest of them are filled in by the owner of the image or other
authorized users through a Web form. We consider that only the
most important attributes of the defined schema are indexed, in
order to reduce the complexity of the indexing method and limit
the search space for faster results.

Our approach to support multiattribute queries in the DHT is
based on properties of SFCs. An SFC continuously maps a compact
interval to a d-dimensional space. SFCs preserve locality, so that
close points in the one-dimensional space are mapped to close
points in the d-dimensional space.

The SFCs are utilized in the Metadata overlay in order to
influence the data placement in the DHT without changing the
routing algorithm of the Kademlia protocol. Our goal is metadata
files with relative attributes to end up, with higher probability, in
nodes with close IDs, so as to reduce flooding over the network for
range queries.

In our multidimensional indexing scheme, we consider that the
set of d attributes to be indexed forms a d-dimensional space.
Each point in this space represents a combination of values for
these indexed attributes. The points of the d-dimensional space
are mapped down to a single dimension by the SFC component,
which utilizes the Hilbert curve or the Z-curve. The result is the
partitioning of the d-dimensional space into cells, which in turn are
assigned an integer and mapped to points on a single dimension.

A basic property of SFCs is their recursive generation. The
number of recursions is indicated by the factor k called the
approximation order. This factor defines the number of space
partitions and thus the precision of the algorithm. For example,
in the Hilbert SFC case the d-dimensional space is subdivided
into 2¢ cells filled in by the First Order Curve initially, where k
is considered to be equal to one. In the next recursion, each cell
is subdivided 2¢ more times and is filled in by the Second Order
Curve. The same procedure is repeated until the k-th Order Curve
is generated.

The derived values in the single dimension represent the keyset
of the Kademlia-based DHT overlay. Each key is kd bits long and
each node in the overlay manages data mainly in contiguous
ranges of the SFC. We decided that the most appropriate SFC
to consider for our case is the Hilbert SFC, since it appears to
present the best clustering properties [30,31]. The Hilbert SFC can
be approximated in a higher order by a combination of First Order
Curves appropriately oriented.

The SFC component executes the following operations:

Find_SFCID: Maps the coordinates of a point in the d-dimensional
space into its position in the SFC.

Find_Coordinates: Maps a point in the SFC to its coordinates in
the d-dimensional space.

Traverse_SFC: Produces the SFC recursively enumerating the
points of the d-dimensional space by transversing the SFC
in order to find adjacent points.

The mapping of a point in the d-dimensional space to its
position in the SFC and vice versa is not simple and the
difficulty increases analogously to the number of dimensions.
The generation of the SFC can be performed non-recursively by
using circular shift and exclusive-or operations on bytes according
to the Butz algorithm [32]. Based on this algorithm, we have
implemented the mapping procedures from the d-dimensional
space to one dimension and vice versa. The traversal of the SFC is
done by generating the curve recursively.

The search of a metadata file requires knowing the exact key
used during the insertion of the metadata file in the DHT. This
knowledge is acquired by using the SFC component. Therefore,
the values of the indexed attributes for the searched metadata
file are given as input to the algorithm that maps them to the
corresponding key. The output is the SFC ID which is the key
used during the insertion phase of the specific metadata file. The
insertion of metadata file is described in Algorithm 1. The node
instructed to lookup the specific metadata file using its key in the
network issues « parallel queries to the closest nodes it is aware of.
A reply will be the metadata file or routing information in the form
of even closer nodes to the respective key. The node continues the
process until the metadata file is found or all kappa closest nodes
to the key are contacted.

Algorithm 1 Insert Metadata File

AttrsTolndex < Parse(metadatafile)
key < Find_SFCID(AttrsTolndex)
Add UID to the metadata file
STORE (key, metadatafile)

The answer to a query might be a metadata file with a specific
key or metadata files with keys inside one or more key ranges,
depending on the type of the query. A single key is used to lookup
a metadata file for an exact match query, if the user searches for
a specific combination of the indexed attributes. The processing
of a non exact match query consists of two consecutive phases.
In the first phase, clusters of SFC points corresponding to keys
of metadata files answering the query are determined. In the
next phase, lookup operations for these cluster(s) start. Lookups
for key ranges require the modification of the Kademlia protocol
and mainly of the FIND_VALUE and the FIND_NODE operations.
Assuming that churn will not be an issue for our target applications,
each node is aware of the next node with the closest ID in the
network and maintains an index towards it. Each time that a query
for a key range arrives at a node, it scans its keys and replies with
metadata files inserted with keys included in the key range. If
the node is responsible only for a subrange, then it forwards the
query to the next node. The forwarding of the query continues
until objects within the key range are retrieved. The steps of the
described search procedure are presented in Algorithm 2.

The number of bits used for value encoding in each dimension is
equal to the approximation factor. We consider that there are three
categories of attributes to be indexed: numerical, categorical and
string attributes. For numerical types such as date, size, duration,
we use their bit representations as input to the SFC component.
The categorical attributes can be easily encoded due to the fact that
the number of different values is limited. For string attributes, we
use a hash function to map them into the available value ranges.
A special case of string attributes is keywords. Our goal is to allow
a user to describe a file with keywords without restricting their
number. Moreover, keyword searches are the most popular in such
platforms and the search mechanism should provide fast replies.
For these reasons, we have decided not to include the keywords
in the dimensions of the SFC scheme. Each keyword is hashed
and inserted in the Metadata overlay separately, as the key of a

A. Asiki et al. / Future Generation Computer Systems 25 (2009) 426-435 431

Example of XML file containing
Metadata description

<date> Tue Jun 17 02:20:28 EEST
2008</date>

<UID>4E5A5566...90</UID>

Inputs
<?xml version="1.0" encoding="UTF-8"
standalone="no" author STORE (SFC ID= Metadata overlay
00..00647359182,
<Metadata> metadata_file)
<author> Smith, John</author> topic SFC
<topic> sports </topic> Component
date | .|

FIND_VALUE (SFC
Ip=
00..00647359182)

</Metadata>

Fig. 2. Inserting and searching a metadata file in the Metadata overlay.

Algorithm 2 Search

if query is a exact match query then
key < Find_SFCID(Indexed_Attr)
lookup key
else
find key_ranges
for each key_range do
node < lookup(key_range)
search(node, key_range)
if node is NOT responsible for the whole range then
forward the query to the next node and repeat if it is
needed until the range is covered
end if
end for
end if

(key, value) pair, where the value is the SFC ID produced by the
SFC component. Therefore, queries for keywords can be answered
directly with simple lookup operations in the DHT.

An example of insertion and search of a metadata file is shown
in Fig. 2. The XML file contains a metadata description with three
attributes to be indexed. The author is a string attribute, while the
topic is considered to be categorical. The date is parsed, so that its
numerical representation is to be used. The XML file is enhanced
with the UID of the data file as well. The values of the three
attributes to be indexed are given as input to the SFC component.
The produced SFC ID is used as key to store the XML file in the
proper node of the Metadata overlay. In order to search the specific
metadata file, the values of the author, topic and date attributes
should be given to the SFC component. The output is the SFC ID of
the metadata file. The lookup operation of the Kademlia protocol
is used for this SFC ID, so that the metadata file is to be found.

In DHT-based systems, the even distribution of load among
nodes is critical for the performance of the system. Traditional DHT
systems deal with this problem by using a hash function in order to
achieve random generation of keys. The random hashing for node
IDs means that each node is responsible for just a small interval
of the address space (between itself and the next node), while the
random mapping of items means that roughly the same number
of items get IDs belonging to the interval of the address space
owned by each node. On the other hand, the multidimensional
indexing based on SFCs aims to preserve locality. This feature
and the heterogeneity of nodes in terms of storage capacity and
bandwidth have negative impact on the load distribution. To deal
with this problem, we intend to implement a solution based
on virtual servers, proposed in [33]. A virtual server acts like a
physical node: it is responsible for a contiguous portion of the
DHT’s identifier space, thus for all data items whose IDs fall
into that portion. Moreover, it is a single entity, meaning it has
its own routing table. A physical node can host multiple virtual

servers, thus it owns multiple, non-contiguous intervals of the
identifier space. Load balancing will be achieved by physical nodes
exchanging virtual servers in order to lighten their burden. When
a physical node is overloaded by virtue of available storage space
or bandwidth, it may move one or more of its virtual servers to
another, underloaded physical node.

6. A distributed replica location service

The DRLS overlay implements a Distributed Replica Location
Service [34] using a DHT by correlating its inherent (key, value)
pairs to (UID, XML with PFNs) mappings. Every data file is assigned
with a UID, which is considered to uniquely identify the file in the
system. The UID is included in the metadata file as well and links
the metadata description to the actual data.

The main problem associated with the usage of a DHT to store
replica locations lies in the difficulty of the P2P network to handle
mutable data. Each (key, value) pair is stored to nodes with IDs close
to the keys and cached around the network. Therefore, it is difficult
to ensure in a given moment that all replicas have been informed
of the existence of a new version during an update procedure.
While this may seem sufficient for storing read-only files, it is not
adequate to serve the needs of a Replica Location Service in a grid
environment. Update operations are necessary for storing replica
locations, since the PFNs of files could change frequently. For this
reason, there should be a way for propagating the modifications
throughout the network as soon as possible.

In order to establish a scheme that enables the handling of
mutable data, we take into account the fact that peers of a DHT
may distribute data in numerous peers of the system. There is a
significant probability that upon subsequent queries for the same
key, at least one of the updated ones will be contacted, if a value
is changed in one of these nodes. Nevertheless, node arrivals and
departures may result in unpredictable differentiations in storage
relationships between data items. As a consequence, lookups
should always query all nodes responsible for a specific (key,
value) pair, compare the results based on some predefined version
vector (indicating the latest update of the value) and propagate the
changes to the found nodes, which have not been up-to-date with
the latest value yet. This requires that the algorithm for locating
data items does not halt when the first value is returned, but
continues until all available versions of the pair are returned. The
querying node will then decide which version to keep and send
corresponding store messages back to the peers that seem to hold
older or invalid values. Updates can therefore be implemented
through the predefined set operation and version checking can
also be done by nodes receiving store commands. The latter should
check their local storage repositories for an already present (key,
value) pair and keep the latest version of the two values in case
of a conflict. The version of a (key, value) pair is determined by a
timestamp indicator.

432 A. Asiki et al. / Future Generation Computer Systems 25 (2009) 426-435

Download pieces from
GridFTP servers

GridTorrent
Peer

GridFTP
Peer

Exchange pieces using
GridTorrent Protocol

Get size, piece_size, hashes
— Get PFNs

-

DRLS «
. |Register new replica

RLSManager F# PeerManager

" DiskManager
b

Local node

Store and Retrieve
file pieces
SHA1 check

Fig. 3. GridTorrent architecture.

Our modified lookup algorithm works in a way similar to
the FIND_NODE loop of Kademlia, originally used for storing
values in the network. We first find all closest nodes to the
requested (key, value) pair, through FIND_NODE RPCs, and then
send them FIND_VALUE messages. The querying node checks all
values returned, finds the most recent version and notifies the
nodes having stale copies of the change. Of course, if a peer replies
to the FIND_VALUE RPC with a list of nodes it is marked as not up
to date. When the top kappa nodes have returned a result (either
a value or a list of nodes), we send the appropriate STORE RPCs.
Nodes receiving a STORE command should replace their local copy
of the (key, value) pair with its updated version. Storing a new
key in the system is done exactly in the same way, with the only
difference that the latest version of the data item is provided by
the user. Moreover, deleting a value equals updating it to zero
length. Deleted data will eventually be removed from the system
when it expires. Updating the mappings is an atomic operation,
i.e. it happens immediately after the responsible peer receives the
original update. Thus, there exists only a single version each time.

7. GridTorrent: A data transfer mechanism for the storage
overlay

The purpose of this layer is to provide a data transfer
mechanism that effectively deals with large and concurrent file
uploads and downloads, even when numerous requests rely
on a single data source, maximizing bandwidth utilization. The
proposed solution, GridTorrent [35], constitutes a decentralized
approach, that, unlike GridFTP, takes advantage of multiple replicas
to boost aggregate transfer throughput.

GridTorrent is an implementation of the popular BitTorrent
protocol designed to interface and integrate with well-defined
and deployed Data Grid components and protocols (e.g. GridFTP,
RLS). Just like BitTorrent, GridTorrent is based on P2P techniques,
that allow clients to download files from multiple sources while
uploading them to other users at the same time, rather than
obtaining them from a central server. By dividing files into
fragments, GridTorrent can combine the best out of the two
protocols:

e It exploits BitTorrent’s peer and fragment selection, thus
providing an optimized data transfer service.

e It takes advantage of the striped version of GridFTP protocol, as
it has the ability to directly communicate with GridFTP servers,
thus being backwards compatible.

In short, GridTorrent works as follows: A request to GridTorrent
for a file triggers a query to the DRLS overlay. This procedure
is repeated periodically, in order to detect any changes in the
locations of file replicas or of any joins or departures of nodes.
The file can be located in GridFTP servers or GridTorrent peers.
GridTorrent nodes can be classified into leechers still downloading
pieces and seeds, meaning peers having the whole file. Upon
receiving the list of peers, GridTorrent acts according to the
protocol prefix of the PFN. If it concerns a GridTorrent client,
the two involved peers initiate communication by exchanging the
BitTorrent bit field message, informing each other of the pieces
they possess. Furthermore, each time a peer downloads a piece, it
sends a have message notifying all peers connected to it of its new
acquisition. In order to download data from another GridTorrent
client, the peer issues a request message for blocks. Blocks are parts
of a piece, referenced by the piece index, a zero-based byte offset
within the piece and their length. Having information about the
available pieces, GridTorrent starts downloading pieces following
a rarest-first policy. In case of a GridFTP server, the peer does
not need to exchange bit field messages. As for the downloading
technique, the client issues a GridFTP partial get message for the
data within the specific block it intends to download.

As shown in Fig. 3, GridTorrent consists of the following
components:

e The RLSManager, a component that communicates with the
DRLS overlay to acquire the DRLS Metadata description
containing the size of each file fragment, the hash for
every piece, used for integrity reasons imposed by this
extended fragmentation and the physical locations of the
various replicas. The physical locations are identified by a
GridTorrent URL, a unique identifier of the following form, so
as to preserve the backwards compatibility with existing Grid
transfer mechanisms: gtp://site.fqdn/path/to/file.

e The PeerManager, which handles all the communication with
other GridTorrent or GridFTP enabled peers.

e The DiskManager, which manages all disk 1/O for storing
and retrieving files. The DiskManager is also responsible for
verifying the correctness of the file by comparing the SHA1 of
each downloaded piece against the SHA1 provided by the DRLS.

A. Asiki et al. / Future Generation Computer Systems 25 (2009) 426-435 433

Although GridTorrent is evolving work, preliminary experimen-
tal results indicate notable improvement in the average transfer
rate for large data files in WAN network conditions. Fig. 4 sum-
marizes these results, presenting the minimum, maximum and
average completion time in seconds when distributing a file to a
constant set of nodes. More precisely, having a GridFTP server run-
ning on a node, we invoked concurrent file transfers to 16 client
nodes of our testbed, first using GridFTP and then using GridTor-
rent, and measured the total completion time. This experiment was
conducted for file sizes varying from 16 to 512 MB.

8. Description of insertion and search

So far, we have described a grid middleware for storage, search
and retrieval of data. In Section 4, the overall architecture along
with the implemented services have been presented. The exact
procedure for insert and search operations as well as the interaction
among the various components are shown in Fig. 5(a) and (b).

Insertion: The Data Client receives a data file and generates its
UID. Then, the UID is added in the metadata file among the rest
of the description provided by the user. The Data Client sends the
data file to the Data Service, which uploads it in the Storage overlay
using the GridTorrent mechanism. If the user’s node participates in
the Storage overlay, the file is stored locally as well. The PFNs of the
nodes, where the file has been successfully uploaded, are returned
to the Data Service. Afterwards, the Data Service creates the XML

6000 . . . I
GridFTP average
GridFTP min ----x---
5000 - GridFTP max - : |
GridTorrent average a
GridTorrent min ——=-- g
4000 F GridTorrent max -~ o - - k |
)
g 3000 - Iy |
£ ‘
2000 - |
1000 - |
0 oo ‘ =i o
16 32 64 128 256 512

dataset size (MB)

Fig. 4. Minimum, maximum and average time required for 16 independent
downloaders to transfer a file using either GridFTP or GridTorrent.

file for the DRLS Metadata description including these PFNs and
inserts it in the DRLS. The Metadata Client receives the metadata
file along with the UID of the data file and passes the metadata
file through the SFC component to generate its SFC ID. Finally,
the metadata file is stored and replicated in the Metadata overlay.
The described procedure along with the succession of events for
inserting a new file is shown in Fig. 5(a).

a

Data Client Metadata Client
o @ e . L ‘.
: Step 4: 1
! ID = SHA1 of fil '
| Data Service Send U S of file content . ha;etadata :
| ervice :
|
i . <D Step 5: I
! Step 3: =] y UDadded |
b S Step 2: Store UID to PFNs SFC !
! : : mappings
|GridTorren Return Reid component :
ifile transfer PFNs of the Step 6: !
| stored file < Store |
J = yMetadata XML |
| I
! Storage overlay DRLS overlay Metadata overlay i
| i
i |
|
| I
| I
' ;

Data Service |-

Step 5:

Metadata Client

,,,,,,,,,,,,,;,, 2 VStep1: o
Query

[

Step 7:
GridTorrent
file transfer Step 6:
from PFNs Get PFNs for
asked UIDs

Y

Metadata
Service
Step 2:
Associate
SFC me_ladata
component with IDs
Step 3:
Search IDs given by
v the SFC

Storage overlay

Metadata overlay

Fig. 5. (a) Logical operations occurring when inserting a new file. (b) Logical operations occurring when retrieving a file using user-defined metadata attributes.

434 A. Asiki et al. / Future Generation Computer Systems 25 (2009) 426-435

Search: The Metadata service provides a search mechanism
for complex queries in the indexed attributes of the predefined
metadata schema. When a user aims to retrieve a data file, the
succession of events is depicted in Fig. 5(b). The SFC component
produces the SFC IDs for the metadata files, which reflect the user’s
requirements. In case of a query based on keywords, a lookup
operation for the hashed value of each keyword is performed.
This operation returns the SFC IDs of the metadata files with this
keyword. The returned SFC IDs are compared and only the common
ones for all keywords are searched in the Metadata overlay. The
retrieved (if any) XML files are returned to the Metadata Service
and presented to the Metadata Client according to their relevance
with the query. The user chooses the files to download and their
UIDs are exported from the corresponding metadata files. DRLS is
queried using these UIDs, thus producing to the Data Service a list
of PFNs in order to get the file(s) from. Finally, the GridTorrent file
transfer module downloads the selected file(s) which can be locally
saved.

9. Implementation issues

As noted above, our platform intends to host large-scale data
management applications, which will be developed on top of the
middleware layer. We are currently working on the implementa-
tion of the prototype middleware according to the described ar-
chitecture. The proposed services are developed as Grid services
according to the Open Grid Service Architecture (OGSA) [36], us-
ing the libraries of Globus Toolkit 4 (GT4) [8]. One of the es-
sential requirements of OGSA is the implementation of the un-
derlying software with stateful services. For this reason, all ser-
vices in the different overlays of our architecture are imple-
mented according to the Web Service Resource Framework (WSRF)
and communicate with each other through well-defined inter-
faces. What is more, the services are compatible with the com-
ponents of the Grid Security Infrastructure (GSI) for reasons re-
lated to authentication, secure communication and the applica-
tion of uniform policies across the infrastructure. All services
are implemented in Java and we aim to ensure their portabil-
ity and their deployment to be independent from the underlying
platform.

The metadata description that accompanies each data item is
included in an XML file and is validated by an XSD schema, defined
by the application’s requirements. The attributes describing the
data are chosen according to the needs of the specific community
and common acceptable standards. A use case designed for this
platform is a geographically distributed repository for journalists.
In this case, the data items are multimedia files, thus the metadata
schema is based on the MPEG-7 standard [37].

10. Conclusion and future work

This paper addresses issues on efficient sharing and man-
agement of annotated content among distributed heterogeneous
resources. In this context, we proposed a service-oriented middle-
ware architecture, that provides store, search and retrieve prim-
itives for manipulation of data. We introduced the idea of DHT
overlays for metadata and data management, thus avoiding the
use of centralized entities. Moreover, a multidimensional index-
ing scheme, that speeds up the searching procedure and supports
multiattributes and range queries has been described. Finally, we
presented GridTorrent, a transfer protocol resilient to flash crowd
conditions and completely compatible with existing grid middle-
ware. We believe that the proposed architecture, where various
P2P techniques have been applied, provides a robust and scalable
infrastructure for storing annotated data and searching over a large
set of metadata descriptions.

The implementation of the described platform is currently at
a prototype status. The functionality of basic components has
been predetermined and the corresponding interfaces have been
deployed. However, we explore optimization issues in various
aspects of our design. We are dealing with the challenge of load
imbalance, induced by the heterogeneity of nodes in terms of
storage capacity and bandwidth and the property of SFCs to
preserve locality. Towards this direction, we plan to elaborate on
the idea of virtual servers proposed in [33]. Finally, the clustering
of SFC IDs produced by the SFC component and their routing in the
Metadata overlay for more efficient query processing are also under
consideration.

References

[1] L. Foster, C. Kesselman (Eds.), The grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1999.

[2] BitTorrent.org, URL: http://www.bittorrent.org/index.html.

[3] B. Cohen, Incentives build robustness in BitTorrent, in: Workshop on
Economics of Peer-to-Peer Systems, Berkeley, CA, USA, 2003.

[4] B. Allcock,]. Bester,]. Bresnahan, A.L. Chervenak, I. Foster, C. Kesselman,
S. Meder, V. Nefedova, D. Quesnel, S. Tuecke, Data management and transfer
in high-performance computational grid environments, Parallel Computing 28
(5) (2002) 749-771.

[5] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, The data grid:
Towards an architecture for the distributed management and analysis of large
scale scientific datasets, Journal of Network and Computer Applications 23 (3)
(2000) 187-200.

[6] L. Foster, C. Kesselman, G. Tsudik, S. Tuecke, A security architecture for
computational grids, in: Proc. of the 5th ACM Conference on Computer and
Communications Security, 1998, pp. 83-92.

[7] W. Allcock,]. Bresnahan, R. Kettimuthu, M. Link, The globus striped GridFTP
framework and server, in: Proc. of the 2005 ACM/IEEE Conference on
Supercomputing, 2005.

[8] L Foster, Globus Toolkit Version 4: Software for service-oriented systems,
Journal of Computer Science and Technology 21 (4) (2006) 513-520.

[9] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. lamnitchi,
C. Kesselman, P. Kunszt, M. Ripeanu, B. Schwartzkopf, H. Stockinger,
K. Stockinger, B. Tierney, Giggle: A framework for constructing scalable
replica location services, in: Proc. of the 2002 ACM/IEEE conference on
Supercomputing, 2002, pp. 58-58.

[10] A. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman, R. Schwartzkopf,
H. Stockinger, B. Tierney, Performance and Scalability of a replica location
service, in: Proc. of the 13th IEEE International Symposium on High
Performance Distributed Computing Conference (HPDC-13), Honolulu, pp.
182-191, 1998.

[11] E. Deelman, G. Singh, M. Atkinson, A. Chervenak, N.C. Hong, C. Kesselman,
S. Patil, L. Pearlman, M.-H. Su, Grid-based metadata services, in: Proc. of 16th
Conference on Scientific and Statistical Database Management, Los Angeles,
CA, USA, pp. 393-402, 2004.

[12] K. Karasavvas, M. Antonioletti, M. Atkinson, N.C. Hong, T. Sugden, A. Hume,
M. Jackson, A. Krause, C. Palansuriya, Introduction to OGSA-DAI Services,
in: Lecture Notes in Computer Science, vol. 3458, 2005, pp. 1-12.

[13] Gnutella website: http://rfc-gnutella.sourceforge.net/.

[14] L Clarke, O. Sandberg, B. Wiley, T. Hong, Freenet: A Distributed Anonymous
Information Storage and Retrieval System, in: Lecture Notes in Computer
Science, 2009/2001.

[15] M. Stokes, Gnutella2: http://g2.trillinux.org/.

[16] S. Daswani, A. Fisk, Gnutella UDP Extension for Scalable Searches (GUESS)
vO0.1.

[17] L Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan, Chord: A scalable
peer-to-peer lookup service for internet applications, in: Proc. of the 2001 ACM
SIGCOMM Conference, 2001, pp. 149-160.

[18] A.LT. Rowstron, P. Druschel, Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems, in: Middleware '01:
Proceedings of the IFIP/ACM International Conference on Distributed Systems
Platforms Heidelberg, Springer-Verlag, 2001, pp. 329-350.

[19] P. Maymounkov, D. Mazieres, Kademlia: A peer-to-peer information system
based on the XOR metric, in: Proc. of the 1st International Workshop on Peer-
to-Peer Systems, IPTPS02, Cambridge, USA, 2002.

[20] S.Ratnasamy, P. Francis, M. Handley, R. Karp, S. Schenker, A scalable content-
addressable network, in: Proc. of the 2001 Conference on Applications,
Technologies, Architectures and Protocols for Computer Communications,
SIGCOMMO1, ACM, San Diego, CA, United States, 2001, pp. 161-172.

[21] C. Schmidt, M. Parashar, Enabling flexible queries with guarantees in P2P
systems, [EEE Internet Computing 8 (3) (2004) 19-26.

[22] P. Ganesan, B. Yang, H. Garcia-Molina, One torus to rule them all: multi-
dimensional queries in P2P systems, in: Proc. of the 7th International
Workshop on the Web and Databases, WebDB’04, ACM, Paris, France, 2004,
pp. 19-24.

[23] J. Lee, H. Lee, S. Kang, S.M. Kim, J. Song, CISS: An efficient object clustering
framework for DHT-based peer-to-peer applications, Computer Networks 51
(4) (2007) 1072-1094.

A. Asiki et al. / Future Generation Computer Systems 25 (2009) 426-435 435

[24]]. Aspnes, G. Shah, Skip graphs, in: Proc. of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, 2003, pp. 384-393.

[25] S. Ramabhadran, S. Ratnasamy, J.M. Hellerstein, S. Shenker, Brief announce-
ment: Prefix Hash Tree, in: Proc. of the Twenty-third Annual ACM Symposium
on Principles of Distributed Computing, PODC'04, ACM, New York, NY, USA,
2004, pp. 368-368.

[26] A. Datta, M. Hauswirth, R. John, R. Schmidt, K. Aberer, Range queries in trie-
structured overlays, in: Fifth IEEE International Conference on Peer-to-Peer
Computing, 2005, pp. 57-66.

[27] E.Caron, F. Desprez, C. Tedeschi, Enhancing computational grids with peer-to-
peer technology for large scale service discovery, Journal of Grid Computing 5
(3)(2007) 337-360.

[28] H. Zhuge, X. Sun, J. Liu, E. Yao, X. Chen, A scalable P2P platform for the
knowledge grid, IEEE Transactions on Knowledge and Data Engineering 17 (12)
(2005) 1721-1736.

[29] Grid Enabled access to rich media content (GREDIA) IST project, URL:
http://www.gredia.eu.

[30] M.F. Mokbel, W.G. Aref, I. Kamel, Analysis of multi-dimensional space-filling
curves, Geoinformatica 7 (3) (2003) 179-209.

[31] B. Moon, H. Jagadish, C. Faloutsos, J. Saltz, Analysis of the clustering properties
of the Hilbert space-filling curve, IEEE Transactions on Knowledge and Data
Engineering 13 (1) (2001) 124-141.

[32] AR. Butz, Alternative algorithm for Hilbert's Space Filling Curve, IEEE
Transactions on Computers C-20 (4) (1971) 424-426.

[33] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, I. Stoica, Wide-area cooperative
storage with CFS, in: Proc. of the Eighteenth ACM Symposium on Operating
Systems Principles, SOSP’01, ACM, New York, NY, USA, 2001, pp. 202-215.

[34] A.Chazapis, A. Zissimos, N. Koziris, A peer-to-peer replica management service
for high-throughput Grids, in: Proc. of the 2005 International Conference on
Parallel Processing, ICPP05, Oslo, Norway, 2005, pp. 443-451.

[35] A. Zissimos, K. Doka, A. Chazapis, N. Koziris, GridTorrent: Optimizing data
transfers in the Grid with collaborative sharing, in: Proc. of the 11th
Panhellenic Conference on Informatics, PCI2007, Patras, Greece, 2007.

[36] I Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn,
F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell,].V. Reich, The open grid
services architecture, Version 1.0, Informational document, Global Grid Forum
(GGF), 2005.

[37] MPEG-7 Overview, 2004. URL: http://www.chiariglione.org/mpeg/standards/
mpeg-7/mpeg-7.htm.

Athanasia Asiki received her Diploma in Electrical and
Computer Engineering (2005) from the National Techni-
cal University of Athens, Greece. She is currently a Ph.D.
student in the School of Electrical and Computer Engi-
neering, National Technical University of Athens. Her re-
search interests include large-scale distributed systems,
grid middleware, development of grid applications, and
search techniques in Peer-to-Peer systems. She is a stu-
dent member of the IEEE and a member of the Technical
Chamber of Greece.

Katerina Doka received her undergraduate degree in
Electrical and Computer Engineering from the National
Technical University of Athens in July 2005. She is
currently a Ph.D. student at the Computing Systems
Laboratory, Dept. of Electrical and Computer Engineering
of the National Technical University of Athens, doing
research in the field of Large Scale Distributed Systems,
Peer-to-Peer Technologies and Grid Computing. Since
2006 she has participated in a number of European and
National R&D Projects.

| Ioannis Konstantinou received his undergraduate degree
in Electrical and Computer Engineering from the National
Technical University of Athens in November 2004. He is
currently working at the Computing Systems Laboratory
at the National Technical University of Athens, where he
is pursuing his Ph.D. in the field of Grid Computing, Large
scale distributed systems and Peer to Peer technologies.

Antonis Zissimos graduated from the School of Electrical
and Computer Engineering at the National Technical
University of Athens in 2003. Today, he is a Ph.D. student
at the Computing Systems Laboratory and his advisor
is Professor Nectarios Koziris. He has teaching assistant
experience in undergraduate courses of ECE/NTUA. He is
also a reviewer at parallel and distributed conferences
and journals of IEEE/ACM. Currently, he is working as
a Research Associate at the Institute of Computer and
Communication Systems/Computing Systems Laboratory
at NTUA and he is involved in European and National
R&D programs in the field of Grid/High Performance Computing, Networking and
Storage for IT systems. He is a member of the IEEE Computer Society and the
Technical Chamber of Greece.

Dimitrios Tsoumakos is a senior researcher in the Com-
puting Systems Laboratory of the Department of Electri-
cal and Computer Engineering of the National Technical
University of Athens (NTUA). He received his Diploma in
Electrical and Computer Engineering from NTUA in 1999.
He joined the graduate program in Computer Sciences at
the University of Maryland in 2000, where he received
his M.Sc. (2002) and Ph.D. (2006). His research interests
lie in the area of distributed systems/algorithms, particu-
larly in designing and implementing adaptive, bandwidth-
efficient schemes for data retrieval and dissemination in
both structured and unstructured Peer-to-Peer systems. Furthermore, he is inter-
ested in Grid Computing applications, considered to be the natural evolution of
Peer-to-Peer networking. He has also been involved in Database research, espe-
cially in applying distributed schemes to autonomous interconnected databases
(Peer Databases) with limited or no schema information.

Diploma in Electrical Engineering from the National Tech-
nical University of Athens (NTUA) and his Ph.D. in Com-
puter Engineering from NTUA (1997). He joined the
Computer Science Department, School of Electrical and
Computer Engineering at the National Technical Uni-
versity of Athens in 1998, where he currently serves
as an Associate Professor. His research interests include
Computer Architecture, Parallel Processing, Parallel Ar-
chitectures (OS and Compiler Support, Loop Compilation

- Techniques, Automatic Algorithm Mapping and Partition-
mg) and Communication Architectures for Clusters. He has published more than 60
research papers in international refereed journals and in the proceedings of inter-
national conferences and workshops. Nectarios Koziris is a recipient of the IPDPS
2001 best paper award for the paper “Minimising Completion Time for Loop Tiling
with Computation and Communication Overlapping”. He serves as a reviewer in In-
ternational Journals (TPDS, JPDC, JSC, etc) and as a Program Committee member in
various parallel computing conferences (IPDPS, HiPC, ICPP, IPDPS, CAC, PDSEC, SAC,
etc). He is a member of IEEE Computer Society, member of IEEE TCPP and TCCA,
member of ACM and chairs the Greek IEEE Computer Society Chapter. He also serves
as Vice-Chairman for the Greek Research and Education Network (GRNET-Greek
NREN, www.grnet.gr).

\ Nectarios Koziris, Associate Professor, received his

Panayiotis Tsanakas (Professor) received his Diploma in
Electrical Engineering from the University of Thessaloniki
(1982), his M.Sc. in Computer Engineering from Ohio
University (1985), and his Ph.D. in Computer Engineering
from the National Technical University of Athens (1988).
He is now serving as Professor at the School of Electrical
and Computing Engineering of the National Technical
University of Athens. His research interests include high
performance architectures, and distributed applications
in medicine and education. He co-authored six textbooks
(in Greek): Operating System Principles, Introduction to
Computer Architecture, The Operating System EMPIX, Parallel Computing Systems,
Mapping Algorithms into Parallel Processing Architectures, Computer Architecture
and Operating Systems. He has published more than 15 papers in refereed scientific
journals, and more than 40 papers in the proceedings of international conferences
and workshops. He has served as reviewer for several International Journals and
Conferences, and as evaluator for research project proposals. Prof. Tsanakas is
the Chair for the Greek Research and Education Network (GRNET-Greek NREN,
www.grnet.gr).

