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Abstract In this paper, we revisit the performance issues of the widely used sparse
matrix-vector multiplication (SpMxV) kernel on modern microarchitectures. Previ-
ous scientific work reports a number of different factors that may significantly reduce
performance. However, the interaction of these factors with the underlying architec-
tural characteristics is not clearly understood, a fact that may lead to misguided, and
thus unsuccessful attempts for optimization. In order to gain an insight into the details
of SpMxV performance, we conduct a suite of experiments on a rich set of matrices
for three different commodity hardware platforms. In addition, we investigate the
parallel version of the kernel and report on the corresponding performance results
and their relation to each architecture’s specific multithreaded configuration. Based
on our experiments, we extract useful conclusions that can serve as guidelines for the
optimization process of both single and multithreaded versions of the kernel.
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1 Introduction

Matrix-vector multiplication is performed in a large variety of applications in sci-
entific and economic modeling, signal processing, document retrieval, and others.
Quite commonly, the matrix that participates in the computation is sparse, as for ex-
ample is the case of matrices arising from the discretization for physical processes.
Sparse matrix-vector computations and, in particular, sparse matrix-vector multipli-
cation (SpMxV) have been recently categorized as one of the “seven dwarfs,” i.e.,
seven numerical methods that are believed to be important for science and engineer-
ing for at least the next decade [2]. SpMxV is generally reported to perform poorly
on modern microprocessors (e.g., 10% of peak performance [26]) due to a number of
issues concerning the algorithm itself, the storage formats, and the sparsity patterns
of the matrices.

Primarily, matrix-vector multiplication is a memory-bound kernel posing more in-
tense memory access needs than other traditional algebra kernels, like dense matrix
multiplication (MxM) or LU decomposition, which are more computationally inten-
sive. MxM and LU benefit from the so-called, surface-to-volume effect, since for a
problem size of n, they perform O(n3) operations on O(n2) amount of data. On the
contrary, matrix-vector multiplication performs O(n2) operations on O(n2) amount
of data, which means that the ratio of memory access to floating point operations is
significantly higher. Seen from another point of view, there is little data reuse in the
matrix-vector multiplication, i.e., very restricted temporal locality. This fact greatly
degenerates the SpMxV performance expressed in MFLOPS. Furthermore, in order
to avoid extra computation and storage overheads imposed by the large majority of
the zero elements contained in the sparse matrix, the nonzero elements of the ma-
trix are stored contiguously in memory, while additional data structures assist in the
proper traversal of the matrix and vector elements. For example, the classic Com-
pressed Storage Row (CSR) format [4] uses the row_ptr structure to index the start
of each row within the nonzero element matrix a, and the col_ind structure to
index the column each element is associated with. These additional data structures
used for indexing further degrade the kernel’s performance since they add additional
memory access operations and cache interference. Sparse matrices also create irreg-
ular accesses to the input vector x (CSR format is assumed) that follow the sparsity
pattern of the matrix. This irregularity complicates the utilization of reuse on vec-
tor x and increases the number of cache misses on this vector. Finally, there is also
a nonobvious implication in sparsity. The rows of the sparse matrices have varying
lengths which are frequently small. This fact increases the loop overheads since a
small number of useful computations is performed in each loop iteration.

The great importance and the singular performance behavior of SpMxV have at-
tracted intense scientific attention [1, 5, 8, 11, 12, 15, 17–20, 23–27]. A general
conclusion is that SpMxV can be efficiently optimized by exploiting information re-
garding the matrix structure and the processor’s architectural characteristics. In gen-
eral, previous research focuses on a subset of the reported problems and proposes
optimizations applied to a limited number of sparse matrices. This fact, along with
the CPUs used in various previous works, may lead to contradictory conclusions and
perhaps to confusion regarding the problems and candidate solutions for SpMxV op-
timization. In addition, the exact reason for performance gain after the application
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of the proposed optimizations is rarely investigated. For example, blocking imple-
mented with the use of the Block Compressed Storage Row (BCSR) format was
proposed by Im and Yelick [11] as a transformation to tame irregular accesses on the
input vector and exploit its inherent reuse, like in dense matrix optimizations. One-
dimensional blocking is also proposed by Pinar and Heath [20] in order to reduce
indirect memory references, while quite recently, Buttari et al. [5] and Vuduc and
Moon [26] accentuate the merit of blocking (the latter with variable-sized blocks)
as a transformation to reduce indirect references and enable register level blocking
and unrolling. However, it is not clarified if the benefits of blocking can be actually
attributed to better cache utilization, memory access reduction, or ILP improvement.
Furthermore, White and Sadayappan [27] report that the lack of locality is not a cru-
cial issue in SpMxV, whereas many important previous works exploit reuse on the
input vector in order to improve performance [8, 11, 18, 19, 24].

The goal of this paper is to assist in understanding the performance issues of
SpMxV on modern microprocessors. To our knowledge, there are no experimental
results concerning the performance behavior of this kernel or any of its optimized
versions on current commodity microarchitectures. In order to achieve this goal, we
have categorized the problems of the algorithm as reported in literature and expe-
rienced in practice. For each problem, we conduct a series of experiments in order
to either quantify or draw a qualitative conclusion of its effect on performance as
accurately as possible. Our experimental results provide valuable insight into the per-
formance of SpMxV on modern microprocessors and reveal issues that will probably
prove particularly useful in the process of optimization. The code performs poorly
on modern microprocessors as well. However, the issues that need to be taken into
consideration in order to optimize it are better understood and quantified. In addi-
tion, we develop multithreaded versions of SpMxV since it is important to evaluate
the speedup of the parallelized algorithm for SMP, CMP, and SMT machines. Al-
though SpMxV is an easily parallelizable code that needs no synchronization or data
exchange between threads, it is far from achieving the theoretically expected linear
speedup. In this case, issues arising from novel multithreaded architectures affect
performance considerably and need to be further illuminated and evaluated. Our ex-
periments for both the single and multithreaded case are executed on three different
microprocessors (Intel Core 2 Xeon, Intel Pentium 4 Xeon, and AMD Opteron) for
a large suite of 100 sparse matrices selected from Davis’ collection [7]. Based on
the experience gained from the interpretation of the experimental results, we are able
to provide solid guidelines for the optimization of both the single and multithreaded
version of SpMxV.

The next of the paper is organized as follows: Sect. 2 discusses previous work on
the optimization of SpMxV and Sect. 3 presents the basic kernel and its problems
as reported in literature. Section 4 presents a thorough experimental evaluation of
the aforementioned problems in single and multithreaded versions, which leads to
a number of guidelines summarized in Sect. 5. We conclude this paper with overall
conclusions and a discussion of directions for future work in Sect. 6.
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2 Related work

Because of its importance, sparse matrix-vector multiplication has attracted intensive
scientific attention during the past two decades. The proposal of efficient storage for-
mats for sparse matrices like CSR, BCSR, CDS, Ellpack-Itpack, and JAD [4, 17, 22]
was one of the primary concerns. Elaborating on storage formats, Agarwal et al. [1]
decompose a matrix into three submatrices: the first is dominated by dense blocks,
the second has a dense diagonal matrix, while the third contains the remainder of the
matrix elements. By using a different format for each submatrix, the authors try to op-
timize execution based on the special characteristics of each submatrix. Temam and
Jalby [23] perform a thorough analysis of the cache behavior of the algorithm, point-
ing out the problem of the irregular access pattern in the input vector x. Toledo [24]
deals with this problem by proposing a permutation of the matrix that favors cache
reuse in the access of x. Furthermore, the application of blocking is also proposed
in that work in order to both exploit temporal locality on x and reduce the need for
indirect indexing through col_ind. Software prefetching for a and col_ind is
also used to improve memory access performance. The proposed techniques were
evaluated over 13 sparse matrices on a Power2 processor and achieved a significant
performance gain for the majority of them. White and Sadayappan [27] state that data
locality is not the most crucial issue in sparse matrix-vector multiply. Instead, small
line lengths, which are frequently encountered in sparse matrices, may drastically de-
grade performance due to the reduction of ILP. For this reason, the authors propose
alternative storage schemes that enable unrolling. Their experimental results exhib-
ited performance gains on a HP PA-RISC processor for each of the 10 sparse matrices
used. Pinar and Heath [20] refer to irregular and indirect accesses on x as the main
factors responsible for performance degradation. Focusing on indirect accesses, the
application of one-dimensional blocking with the BCSR storage format is proposed
in order to drastically reduce the number of indirect memory references. In addition,
a column reordering technique which enables the construction of larger dense sub-
blocks is also proposed. An average 1.21 speedup is reported for 11 matrices on a
Sun UltraSPARC II processor.

With a primary goal to exploit reuse on vector x, Im and Yelick propose the appli-
cation of register blocking, cache blocking, and reordering [10–12]. Moreover, their
blocked versions of the algorithm are capable of reducing loop overheads and indirect
referencing while increasing the degree of ILP. Register blocking is the most promis-
ing of the above techniques. The authors also propose a heuristic to determine an effi-
cient block size. They perform their experiments on four different processors (Ultra-
SPARC I, MIPS 10000, Alpha 21164, PowerPC604e) for a wide matrix suite involv-
ing 46 matrices. For almost a quarter of these matrices, register blocking achieved
significant performance benefits. Geus and Röllin [8] apply software pipelining to
increase ILP, register blocking to reduce indirect references, and matrix reordering to
exploit the reuse on x. They perform a set of experiments on a variety of processors
(Pentium III, UltraSPARC, Alpha 21164, PA-8000, PA 8500, Power2, i860 XP) and
report significant performance gains on two matrices originating from the discretiza-
tion of 3-D Maxwell’s equations with FEM. Vuduc et al. [25] estimate the perfor-
mance bounds of the algorithm and evaluate the register blocked code with respect to
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these bounds. Furthermore, they propose a new approach to select near-optimal reg-
ister block sizes. Mellor-Crummey and Garvin [15] accentuate the problem of short
row lengths and propose the application of the well-known unroll-and-jam compiler
optimization in order to overcome this problem. Unroll-and-jam achieves a 1.11–2.3
speedup on MIPS R12000, Alpha 21264A, Power3-II, and Itanium processors for
two matrices taken from the SAGE package. Pichel et al. [18] model the inherent
locality of a specific matrix with the use of distance functions and improve this local-
ity by applying reordering to the original matrix. The same group proposes also the
use of register blocking to further increase performance [19]. The authors report an
average of 15% improvement for 15 sparse matrices on MIPS R10000, UltraSPARC
II, UltraSPARC III, and Pentium III processors.

Buttari et al. [5] provide a performance model for the blocked version of the al-
gorithm based on BCSR format and propose a method to select dense blocks effi-
ciently. They experiment on a K6, a Power3, and an Itanium II processor for a suite
of 20 sparse matrices and validate the accuracy of the proposed performance model.
Vuduc et al. [26] extend the notion of blocking in order to exploit variable block
shapes by decomposing the original matrix to a proper sum of submatrices storing
each submatrix in a variation of the BCSR format. Their approach is tested on the
Ultra2i, Pentium III-M, Power4, and Itanium II processors for a suite of 10 FEM
matrices that contain dense subblocks. The proposed method achieves better perfor-
mance than pure BCSR on every processor, except for Itanium II. Finally, Willcock
and Lumsdaine [28] mitigate the memory bandwidth pressure by providing an ap-
proach to compress the indexing structure of the sparse matrix, sacrificing in this
way some CPU cycles. They perform their experiments on a PowerPC 970 and an
Opteron processor for 20 matrices achieving an average of 15% speedup.

As far as the parallel, multithreaded version of the code is concerned, past work
focuses mainly on SMP clusters, where researchers either apply and evaluate known
uniprocessor optimization techniques on SMPs, such as register or cache blocking [8,
11], or examine reordering techniques in order to improve locality of references and
minimize communication cost [6, 18]. More specifically, Im and Yelick [11] apply
register and cache blocking on an 8-way UltraSparc SMP. They also examine re-
ordering techniques combined with register blocking. However, the results are satis-
factory only in the case of highly irregular sparse matrices, but the scalability of the
algorithm is still very low. Pichel et al. [18] also examine reordering techniques and
locality schemes. They propose two locality heuristics based on row or row-block
similarity patterns, which they use as objective functions to two reordering algo-
rithms in order to gain locality. Results are presented in terms of L1 and L2 cache
miss rate reduction based mainly on a trace-driven simulation. The effect of these re-
ordering techniques in load balancing is also discussed. Geus and Röllin [8] examine
three parallelization schemes using MPI combined with Cuthill–McKee reordering
technique in order to minimize data exchange between processors. Experiments are
conducted on a series of high performance architectures, including, among others,
the Intel Paragon and the Intel Pentium III Beowulf Cluster. The authors also outline
the problem of the interconnection bandwidth while commenting on the results. In
a higher level, Catalyuerek and Ayakanat [6] propose an alternative data partition-
ing scheme based on hypergraphs in order to minimize communication cost. Finally,
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Kotakemori et al. [13] evaluate different storage formats of sparse matrices on a SGI
Altix3700 ccNUMA machine using an OpenMP parallel version of the SpMxV code.
The authors implement a NUMA-aware parallelization scheme, which yields almost
linear speedup in every case.

Quite recently, Williams et al. [29] have presented an evaluation of SpMxV on a set
of emerging multicore architectures. Their study covers a wide and diverse range of
high-end chip multiprocessors, including recent multicores from AMD (Opteron X2)
and Intel (Clovertown), Sun’s Niagara2 and platforms comprised of one or two Cell
processors. The authors offer a clear view of the gap between the attained perfor-
mance of the kernel, and the peak performance of each architecture it is executed,
both in terms of memory bandwidth and computational throughput. Although they
designate memory bottleneck as the major hurdle of the algorithm from attaining high
parallel performance, they do little effort in estimating its extent, e.g., through quan-
tifying the additional benefit from NUMA-aware memory allocation or examining
the impact of intra-thread cache sharing and classifying the behavior of the algorithm
according to each matrix’s ability to fit in each platform’s aggregate cache. Besides
that, they focus to a large extent on single-threaded optimizations and evaluate their
techniques on a rather small set of matrices (14).

Summarizing on the results of previous research on the field, the following con-
clusions may be drawn: (a) the matrix suites used in the experimental evaluations are
usually quite small, (b) the evaluation platforms include previous generation microar-
chitectures, (c) the conclusions are sometimes contradictory, (d) the performance
gains attained by the proposed methods are not thoroughly analyzed in relevance
to the specific problems attacked, and (e) specific problems of the multithreaded ver-
sions are not reported. The goal of this work is to understand the performance issues
of single and multithreaded SpMxV codes on modern microprocessors. For this rea-
son, we employ a wide suite of 100 matrices, perform a large variety of experiments,
and report performance data and information collected from the performance moni-
toring facilities provided by the modern microprocessors.

3 Basic algorithm and problems

The most frequently applied storage format for sparse matrices is the Compressed
Storage Row (CSR) [4]. According to this format, the nnz nonzero elements of a
sparse matrix with n rows are stored contiguously in memory in row-major order. The
col_ind array of size nnz stores the column of each element in the original matrix,
and the row_ptr array of size n + 1 stores the beginning of each row. Figure 1a
shows an example of the CSR format for a sparse 6 × 6 matrix. Figures 1b and 1c
show the implementation of the matrix-vector multiplication for a dense N × M ma-
trix and for a sparse matrix stored in CSR format, respectively.

According to the literature, SpMxV presents a set of problems that can potentially
affect its performance. These problems are listed below.

(a) No temporal locality in the matrix. This is an inherent problem of the algorithm
which is irrelevant to the sparsity of the matrix. Unlike other important numerical
codes, such as Matrix Multiplication (MxM) and LU decomposition, the elements
of the matrix in SpMxV are used only once [5, 15].
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Fig. 1 Example of the CSR storage format, dense and sparse matrix-vector multiplication kernels

(b) Indirect memory references. This is the most apparent implication of sparsity.
In order to save memory space and floating-point operations, only the nonzero
elements of the matrix are stored. To achieve this, the indices to the matrix ele-
ments need to be stored and accessed from memory via the col_ind and row_
ptr data structures. This fact implies additional load operations, traffic for the
memory subsystem, and cache interference [20].

(c) Irregular memory accesses to vector x. Unlike the case of dense matrices where
the access to the vector x is sequential, this access in sparse matrices is irregular
and depends on the sparsity structure of the matrix. This fact complicates the
process of exploiting any spatial reuse in the access to vector x [8, 10, 18].

(d) Short row lengths. Although not so obvious, this problem is very often met in
practice. Many sparse matrices exhibit a large number of rows with short length.
This fact may degrade performance due to the significant overhead of the outer
loop when the trip count of the inner loop is small [5, 27].

In the next section, we will evaluate the impact of each of the above reported problems
on the performance of the algorithm when executed on modern microprocessors.

4 Performance evaluation

4.1 Experimental process and preliminary evaluation

Our experiments were performed on a set of 100 matrices (see Table 1), the majority
of which was selected from Tim Davis’ collection [7]. The first matrix is a dense
1,000 × 1,000 matrix, matrices 2–45 are also used in SPARSITY [10], matrix #46
is a 100,000 × 100,000 random sparse matrix with roughly 150 nonzero elements
per row, matrix #87 is a matrix obtained by a 5-pt finite difference problem for a
202×202×102 regular grid created by SPARSKIT [21], while the rest are the largest
matrices of the collection both in terms of nonzero elements and number of rows. All
matrices are stored in CSR format.
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Fig. 2 The HyperThreading
technology of the Netburst
microarchitecture. The
architectural state of the
processor is duplicated, thus
forming two logical processors
recognized by the operating
system. Every other resource of
the processor is dynamically or
statically shared between the
two hardware contexts

The hardware platforms used for the evaluation of the kernel consist of a 2-
way SMP Intel Core 2 Xeon processor (Woodcrest), a 2-way SMP Intel Pentium
4 Xeon (Netburst), and a 2-way ccNUMA AMD Opteron (Opteron). These proces-
sors may be considered as a representative set of commodity hardware platforms that
incorporate innovative low-end technologies and support the execution of multiple
software or hardware threads on the same die. The set of processors used presents
a variety of microarchitectural characteristics which allow for a better understand-
ing of the performance of the parallel SpMxV kernel. Netburst is a Simultaneous
Multithreading (SMT) processor, where the architectural state of the processor is du-
plicated, and every other processor resource is shared, statically or dynamically, be-
tween the two executing threads (see Fig. 2). Woodcrest and Opteron are Chip Multi-
processors (CMP), where two processor cores are incorporated into the same die and
share the higher levels of the cache hierarchy (Woodcrest) or the integrated memory
controllers (Opteron). Looking out of the die, there also exist considerable architec-
tural differences; Netburst and Woodcrest are 2-way SMP machines which access the
shared memory through the same Front-Side Bus (FSB) (Fig. 3a), while Opteron is
a cache-coherent NUMA machine, where each processor has its own memory con-
troller which controls different memory banks (Fig. 3b). A more detailed description
of each processor is presented in Table 2.

All systems run Linux (kernel version 2.6) for the x86_64 ISA, and all programs
were compiled using gcc version 4.1 with the -O3 and -funroll-loops op-
timization switches turned on. The latter switch causes the compiler to apply ag-
gressive loop unrolling to all loops of the program. In our experience, the unroller
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Fig. 3 The Xeon SMP (a) and the ccNUMA Opteron (b) architectures. Both cores of Woodcrest share the
L2-cache and the Bus Interface Unit (BIU), which interfaces them to the common FSB and the common
memory controller (MC). In contrast, Opteron cores share only the HyperTransport links and a memory
controller integrated to the same physical package. Each memory request is served independently for
each package through the integrated memory controller. Remote memory accesses are routed to the other
package’s memory controller through the HyperTransport links
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Table 2 Specifications of hardware platforms used

Platform Netburst Opteron Woodcrest

Clockspeed 2.8 GHz 1.8 GHz 2.6 GHz

L1—data 16 KB, 8-way 64 KB, 2-way 32 KB, 8-way

L1—instruction 12 K µops 64 KB, 2-way 32 KB, 8-way

L2—unified 1 MB, 8-way 1 MB, 16-way, exclusive 4 MB, 16-way

#HW threads 4 4 4

Threads arrangement 2 SMP Processors 2 ccNUMA Processors 2 SMP Processors

× 2 Hyperthreads × 2 Cores × 2 Cores

Shared resources all caches, execution memory controller, L2 cache

within physical resources, instr. hyper-transport links

package fetch-decode-schedule-

retirement logic

Table 3 Performance impact of
loop unrolling on SpMxV kernel Processor Matrices Average max

with speedup > 10% speedup speedup

Woodcrest 70 1.41 2.56

Netburst 21 1.21 1.65

Opteron 13 1.21 1.46

of version 4.1 of gcc can provide significant speedup for tight loops. In order to
confirm that loop unrolling is beneficial for the SpMxV code, we conducted experi-
ments with the kernel compiled without unrolling. A summary of the results obtained
is presented in Table 3, where it is shown that this compiler optimization provides
significant speedup, especially in the case of the Woodcrest processor.

The experiments were conducted by measuring the execution time of 128 con-
secutive SpMxV operations with randomly created x vectors for every matrix in the
set and for each different microprocessor. In order to evaluate performance, we used
the floating point operations per second (FLOPS) metric of each run, which was cal-
culated by dividing the total number of floating point operations (2 × nnz) by the
execution time. We applied double precision arithmetic and used 64-bit size integers
for the representation of col_ ind and row_ptr indices, despite the fact that this
work focuses on matrices that fit completely into main memory and for most mod-
ern systems 32-bits would suffice. This decision was based on the fact that memory
size increases with a very large rate and it won’t be long before matrices that require
64-bit integers can be stored exclusively into main memory. It should be noted that
we made no attempt to artificially pollute the cache after each iteration, in order to
better simulate iterative scientific application behavior, where the data of the matri-
ces is present in the cache because either it has just been produced or was recently
accessed. Apart from the execution time, we also measured a variety of performance
monitoring events via the interface provided by each processor.
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Table 4 Performance impact of
hardware prefetching on SpMxV
kernel for Intel processors

Processor Matrices with Average speedup max speedup

speedup > 10%

Woodcrest 84 1.90 2.27

Netburst 93 2.29 2.81

Table 5 Summarized results for the performance of the SpMxV kernel

Processor max (MFLOPS) min (MFLOPS) Average (MFLOPS) DMxV (MFLOPS)

Woodcrest 1208.07 185.73 495.53 790.66

Netburst 615.15 112.15 297.88 658.82

Opteron 494.51 119.97 273.72 507.49

One of the most prominent characteristics of modern microprocessors is hard-
ware prefetching. Hardware prefetching is a technique to mitigate the ever-growing
memory wall problem by hiding memory latency. It is based on a simple hardware
predictor that detects reference patterns (e.g., serialized accesses) and transparently
prefetches cache-lines from main memory to the CPU cache hierarchy. In order to
gain a better insight into the performance issues involved, we conducted experimen-
tal tests to evaluate the effect of hardware prefetching on the SpMxV kernel by dis-
abling it. We present results only for Intel processors since there does not seem to be a
(documented) way to disable hardware prefetching for AMD processors. A summary
of the results obtained is presented in Table 4. Note that there was no case where
hardware prefetching had a negative impact on performance.

4.2 Single-threaded evaluation

4.2.1 Basic performance of serial SpMxV

Figure 4 shows the detailed performance results for the SpMxV kernel in terms of
MFLOPS for each matrix and architecture in the experimental set. To gain a better
understanding of the results, we consider the benchmark of a Dense Matrix-Vector
Multiplication (DMxV) for a dense 1024 × 1024 matrix as an upper bound for the
peak performance of the SpMxV kernel. Summarized results are presented in Table 5.
As expected, the more recent Woodcrest processor outperforms the other two in the
whole matrix set. Moreover, while Netburst and Opteron exhibit similar behavior for
each matrix, Woodcrest deviates greatly in some cases. This is apparent, for example,
in matrices #14, #16, and #54, where the performance for the Woodcrest increases
by a large factor. This is, most probably, due to its larger L2 cache. Furthermore, it
is clear from Fig. 4 that the performance across the matrix set has great diversity.
In order to further elaborate on this observation, we make a distinction between two
different classes in the matrix set; matrices whose working set fits perfectly into L2
cache, and thus experience only compulsory misses, and those whose working set is
larger than the L2 cache size and may also experience capacity misses. The working
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set (ws) in bytes assuming double precision arithmetic and 64-bit integer indexing is
computed by the formula

ws = (nnz × 2 + nrows × 2 + ncols) × 8,

where nrows and ncols are the number of rows and columns of the input matrix,
respectively, and nnz is the number of non-zero elements of the matrix. Figure 5
presents the performance attained by each matrix relative to its working set. The
vertical line in each graph designates the size of L2 cache for each architecture. This
figure clarifies that the great differences between the performance of various matrices
are due to the size of their working sets. If the working set of a matrix fits in the cache,
then obviously, significantly higher performance should be expected. It is evident that
the performance issues involved for each category are different and comparing the
performance of matrices from different classes may lead to false conclusions.

Additionally, Fig. 6 presents the performance of each matrix with respect to the
L2 cache miss-rate as measured from the performance counters of each processor. As
anticipated, working sets that are smaller than the cache size exhibit close to zero L2
miss-rate. At a coarser level, there seems to be a correlation between the performance
in FLOPS and L2 misses. Regardless, the L2 miss-rate metric does not suffice alone
to understand the performance of the kernel. For example, there are cases where a
great increase in the miss-rate does not have an equivalent effect on performance,
and matrices with similar miss-rates have significantly varying MFLOPS.

4.2.2 Irregular accesses

In order to evaluate the performance impact of irregular accesses on x, we have devel-
oped a benchmark, henceforth called noxmiss, which tries to eliminate cache misses
on vector x. More precisely, noxmiss zeroes out the col_ind array, so that each
reference to x accesses only x[0] resulting in an almost perfect access pattern on x.
Note that the noxmiss version of the algorithm differs from the standard one only
in the values of the data included in the col_ind array, and thus executes exactly
the same operations. Obviously, its calculations are incorrect, but it is quite safe to
assume that any performance deviation observed between the two versions is due to
the effect of irregular accesses on the input vector x. Results of the experiments for
the noxmiss are presented in Table 6.

It is worth noticing that only a small percentage of the matrices (no more than 1/3
of the total matrix set) did encounter a significant amount of performance speedup of
over 10% for all processors. This means that the irregular access pattern of SpMxV is
not the prevailing performance problem. For the large majority of matrices, it seems
that the access on x presents some regularity that either favors data reuse from the
caches or exhibits patterns that can be detected by the hardware prefetching mecha-
nisms. However, the majority of matrices that performed rather poorly on the stan-
dard benchmark encountered quite significant speedup on the noxmiss benchmark.
This leads to the conclusion that there exists a subset of matrices where the irregular
accesses on x pose a considerable impediment to performance. These matrices have
a rather irregular nonzero element pattern, which finally leads to poor access and low
reuse on x and tends to degrade performance.
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Table 6 Summarized results for the noxmiss benchmark. The table presents the average and maximum
speedup, and the number of matrices that encountered a minimum performance gain of 10%, 20%, and
30%

Processor Speedup # Matrices

Average max Speedup > 10% Speedup > 20% Speedup > 30%

Woodcrest 1.27 1.74 28 15 11

Netburst 1.33 2.91 26 13 6

Opteron 1.28 2.37 32 16 10

4.2.3 Short row lengths

Short row lengths that are frequently met in sparse matrices lead to a small trip count
in the inner loop, a fact that may degrade performance due to the increased overhead
of the loops. In order to evaluate the impact of short row lengths on the performance
of SpMxV, we focus on matrices that include a large percentage of short rows. Fig-
ure 7 shows the performance of matrices in which more than 80% of the rows contain
less than eight elements. The x-axis sorts these matrices by their ws. The vertical line
represents the cache size of each processor and the horizontal line represents the av-
erage performance across all matrices (see Table 5). The obvious conclusion that can
be drawn from Fig. 7 is that matrices with large working sets and many short rows ex-
hibit performance significantly lower than the average. This performance degradation
could be attributed to the loop overhead. However, the fact that matrices with many
short rows and small working sets achieve remarkably good performance provides a
hint that loop overhead should not be the only factor. Another important observation
that supports the above point is that the matrices reported in Fig. 7 coincide, with
few exceptions, with the matrices that benefited by the noxmiss benchmark. These
facts guide us to the conclusion that short row lengths may indicate a large number of
cache misses for the x vector. This can be explained by the fact that short row lengths
increase the possibility to access completely different elements of x in subsequent
rows.

4.2.4 Indirect memory references

Two indirect memory accesses exist in the SpMxV kernel. One in row_ptr to de-
termine the bounds of the inner loop and one for the x access (col_ind). To inves-
tigate the effect of the indirect memory references in the performance of the kernel,
we used synthetic matrices with a constant number of contiguous elements per row.
These matrices enable us to eliminate both cases of indirect accesses by replacing
them with sequential ones (noind-rowptr, noind-colind). Next, we compare the per-
formance of the new versions with standard in order to attain a qualitative view on
the performance impact of the indirect references. We applied the original SpMxV
kernel and the modified versions on a number of synthetic matrices with 1,048,576
elements and varying row length.

Figure 8 summarizes the performance measured for a subset of the row lengths
applied. Note that the performance does not significantly deviate for different row
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lengths. It is clear that the indirect memory references in row_ptr do not affect
performance. This is quite predictable since these references are rare and replace
an already existing overhead in the inner loop initialization. On the other hand, the
overhead in the indirect access of x through col_ind leads to a dramatic degra-
dation in performance. Regardless, this degradation of performance should not be
attributed to the actual indirect reference per se, since the need of indirect access
to x at the algorithm level have a series of side-effects. Specifically, the col_ind
structure increases significantly the working set of the algorithm, which can greatly
affect performance as it is discussed in the next section, ruins locality of references
to x, since it leads to irregular accesses, and finally, adds an additional instruction
and a RAW dependence in the inner loop of the algorithm, which may further de-
grade performance by incurring pipeline stalls. In practice, it is very difficult to de-
couple these repercussions of indirect references and examine the effect of each one
independently. In our case, the noind-colind benchmark accounts for all the above
considerations as a whole, except for the reference pattern on x, which was the same
for noind-colind and standard benchmarks; this issue was separately addressed in
Sect. 4.2.2.

4.2.5 Lack of temporal locality

Generally, the lack of temporal locality is an issue that can greatly affect performance.
Nevertheless, the data structures of CSR (Fig. 1) are accessed in a rather regular and
streaming pattern with unit stride. Consequently, the hardware prefetcher of modern
microarchitectures is able to detect such simple access patterns and transparently
fetch their corresponding cache-lines from memory (see Sect. 4.1 for an experimental
evaluation of hardware prefetching on SpMxV). Thus, it is quite safe to assume that
the lack of temporal locality in the matrix causes an insignificant number of cache
misses and, therefore, performance is not directly affected by this particular factor.

On the other hand, the lack of temporal locality has an important implication on
the ratio of floating point operations to memory accesses, which can greatly affect
performance. As a result of this lack of locality and of the one-pass nature of the
algorithm, the SpMxV kernel performs O(n2) floating point operations and O(n2)

memory operations, which further accentuates the memory wall problem as com-
pared to other computational kernels, like MxM, which perform O(n3) floating point
operations and O(n2) memory operations. Therefore, the performance of the kernel
in the systems under consideration is not determined by the processor speed, but by
the ability of the memory subsystem to provide data to the CPU [9]. In order to further
illuminate this characteristic of the kernel, we performed a simple, comparative set of
experiments. We used 32-bit integers instead of 64-bit for the col_ind structure in
order to reduce the total size of the working set. This modification led eventually to
a 22.4% average reduction of the working set on every matrix. Respectively, Table 7
shows the average speedup attained for each processor over all matrices. It is quite
impressive that the alleviation of the memory bus pressure in terms of data volume
led to an almost analogous increase in performance. These results complement the
observations from the noind-colind benchmark, where the dramatic increase in per-
formance could be rather safely attributed to the significant reduction of the working
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Table 7 Average speedup over
all matrices achieved by each
processor using 32-bit indexing
in col_ind structure, instead
of 64-bit. This corresponds to an
average 22.4% reduction in the
working set of the algorithm

Processor Average speedup

Woodcrest 1.20

Netburst 1.29

Opteron 1.17

set. The col_ind structure consumes a great portion of the algorithm’s working set
since its size equals the nonzero elements of the sparse matrix.

4.2.6 Interpretation of the experimental results

Based on the experimental evaluation of the previous sections, a number of interest-
ing conclusions for the single-threaded version can be drawn. Firstly, the performance
of the kernel is greatly affected by the matrix working set. As shown in Fig. 5, ma-
trices with working sets that entirely fit in the L2 cache exhibit a significantly higher
performance. However, since these matrices correspond to small problems, their op-
timization is of limited importance, and thus we focus on matrices with large working
sets that do not fit in the L2 cache. In addition, reduction of the ws for the same prob-
lem releases memory bus resources and leads to significant execution speedup. The
memory intensity of the algorithm along with the effects of the indirect memory ref-
erence to x are the most crucial factors for the poor performance of SpMxV and affect
all matrices. On the other hand, the irregularity in the access of x and the existence of
many short rows affect performance at a smaller range and relate to a rather limited
subset of the matrices. Finally, the lack of temporal locality in the matrix structures
does not affect performance directly through issues that could be optimized, e.g.,
cache misses, but inherently increases the number of memory accesses.

In an attempt to quantify the effect of each of the aforementioned issues, we
performed a statistical analysis of our results that is summarized in Fig. 9, where
a number of bars are included for each architecture. The first three bars refer to
benchmarks applied to the dense matrix. Specifically, the first bar (dmv) corresponds
to a dense matrix-vector multiplication benchmark with the dense matrix stored in
the normal dense format. The second bar refers to a dense matrix-vector multiplica-
tion benchmark with the matrix stored in CSR format but with indirect referencing
through col_ind disabled (csr-dense-noind-colind), and the third bar refers to a
dense matrix-vector multiplication benchmark with the matrix stored in normal CSR
format. The csr-avg-nosr-reg bar represents the average performance across all ma-
trices in the suite with working sets larger than the L2-cache size, while the rest of
the bars correspond to all possible subsets of these matrices based on their regular-
ity (-irregular and -regular) and on whether they are dominated by short rows or
not (-sr and -nosr). The criterion for the irregularity is the presence of a significant
speedup (>10%) in the noxmiss benchmark, while for the dominance of short rows
is the presence of a large percentage (>80%) of small row lengths (<8). Note that
all matrices involved in this graph have working sets larger than the L2-cache size.
The numbers over the bars indicate the number of matrices that belong to the par-
ticular set. Note that there exist too few matrices that are dominated by short rows
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and do not face performance degradation due to irregularity. This observation further
supports our assumption that short rows increase the possibility for irregular accesses
on x.

The most important observation from the figure is that one could set three levels of
performance. The performance level determined by DMxV, the average performance
level and the lowest level determined by “bad” matrices with irregularity and domi-
nating short row lengths. Roughly speaking, the dramatic degradation (slowdown by
a factor of about 2) of performance between the DMxV and the average level is due to
the indirect references through col_ind. From that level, if a matrix exhibits some
poor characteristics, like irregularity and many short rows, the performance may fur-
ther drop by a factor of about 1.35. On the other hand, if a matrix is not dominated
by short rows and accesses x in a regular manner, its performance may exhibit a 1.1
speedup to that of the average and reach that of dense matrices stored in CSR. Note
also that the majority of the matrices falls in that last category.

4.3 Multithreaded evaluation

The SpMxV kernel is an easily parallelizable kernel since there does not exist any
loop-carried dependency that could render the parallelization of SpMxV a more
painful task. Nevertheless, there exist a number of issues that can significantly af-
fect performance and should be considered during the parallelization process. These
issues will be addressed in the following sections.

For the parallelization of the SpMxV kernel, we used explicit threading through
the NPTL 2.3.6 library, which implements the POSIX threads. The system call in-
terface provided by the Linux scheduler was also used in order to explicitly assign
threads to specific processing elements (logical processors). In particular, we used
the sched_setaffinity system call. The rest of the experimental configuration
(compiler and optimization flags, hardware platform, matrix set) and the experimen-
tal process used were the same as described for the single-threaded evaluation.

In order to better model the underlying architecture and reveal any architecture-
specific advantages or disadvantages, we used different configurations for the mul-
tithreaded execution. Specifically, we use the notation P × T = nthreads to denote
that we use P physical processors (packages) and T logical processors (hyperthreads
or cores) within the same package. Thus, the notation 1 × 2 means that we use two
threads in total which are mapped to a single physical package but in different logical
processors within that package. Conversely, the notation 2×1 means that each thread
is mapped to a single logical processor in different physical packages.

4.3.1 Load balancing issues

An important issue that arises when parallelizing the SpMxV kernel is the load bal-
ance among the different threads since the sparsity pattern varies within a matrix. In
order to measure the load balancing between the threads, we have used the following
metric:

load-imbalance = # instructions of the most loaded thread

# instructions of a thread
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Table 8 Impact of load-balancing to different thread mappings (speedup)

Platform 1 × 2 2 × 1 2 × 2

nrows-bal nnz-bal nrows-bal nnz-bal nrows-bal nnz-bal

Netburst 1.087 1.109 (+2.2%) 1.159 1.183 (+2.4%) 1.050 1.076 (+2.6%)

Woodcrest 1.853 1.967 (+11.4%) 1.336 1.372 (+3.6%) 2.585 2.793 (+20.8%)

Opteron 1.618 1.700 (+8.2%) 1.544 1.628 (+8.4%) 2.217 2.405 (+18.8%)

The actual number of instructions executed by each thread was obtained through the
performance counters of the processors.

At first we split the sparse matrix row-wise assigning the same number of rows to
each thread; we call this partitioning scheme nrows-bal. The results for two threads
on Netburst are also presented in Fig. 10, from which it is obvious that the two threads
are not balanced. The average load-imbalance factor rises up to 1.26 for this scheme,
and 49 matrices had a load-imbalance factor greater than 1.05. This is quite pre-
dictable since, in general, the nonzero elements of a sparse matrix are not uniformly
distributed over its rows. Consequently, if the sparsity pattern of the matrix is biased
toward the upper or lower half, this naïve scheme yields poor results.

A more sane partitioning scheme is to split the matrix row-wise such that the
same amount of nonzero elements would be assigned to each thread; we will call
this scheme nnz-bal. The split-points in the nonzero element array a are at positions
k × nnz

nthreads , where k = 1,2, . . . , nthreads. In Fig. 10, the load-imbalance factor for
two threads with this partitioning scheme is depicted. It is obvious that this scheme
leads to better load balance. The average load-imbalance factor is 1.05, and only
for 22 matrices did the load-imbalance factor surpassed 1.05. It is worth noticing
here, however, that although this scheme almost equally distributes nonzero elements
among threads, there exist matrices that do not benefit significantly. This is mainly
due to the fact that different sparsity patterns lead to different instruction streams re-
gardless of the number of nonzero elements assigned to each thread. For example, if a
thread is assigned a large number of short rows, then it will be further burdened from
an increased amount of loop control instructions (see Sect. 4.2.3). A more sophis-
ticated partitioning scheme, either dynamic or static, that will better consider these
issues is a matter of future research. In the following, we use the nnz-bal scheme
since it provides a rather balanced split. Table 8 depicts the speedup achieved by
different thread mappings using the two partitioning schemes. The nnz-bal, which
better balances the computations of the kernel, provides an additional improvement
in performance, which might reach 20% for a four-thread configuration.

4.3.2 Shared memory architectures

In this section, we present and discuss the aggregate results of the SpMxV kernel
on every architecture and for each possible multithreading scheme. We focus specifi-
cally on issues that arise when certain architecture resources, such as processor inter-
nal resources, caches, or main memory, are shared among the processing elements.
Table 9 and Table 10 present the speedup (average, minimum, maximum) and the ab-
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Table 9 Aggregate speedup results for every architecture and every multithreading scheme

Platform 1 × 2 2 × 1 2 × 2

ws < cs ws > cs ws < cs ws > cs ws < cs ws > cs

min max avg min max avg min max avg min max avg min max avg min max avg

Netburst 0.96 1.25 1.14 0.96 1.26 1.10 1.72 2.62 2.11 0.91 1.24 1.02 2.00 3.21 2.48 0.76 1.13 0.83

Woodcrest 1.55 2.67 1.98 1.41 5.05 1.96 1.17 2.19 1.79 1.12 1.46 1.18 2.84 8.02 4.27 1.56 5.50 2.13

Opteron 1.78 3.01 2.22 1.26 1.80 1.61 1.78 3.01 2.20 1.11 2.35 1.53 3.14 6.25 4.52 1.16 3.44 1.81

Table 10 Average performance (MFLOPS) of each multithreading scheme on every platform

Platform 1 × 2 2 × 1 2 × 2

ws < cs ws > cs ws < cs ws > cs ws < cs ws > cs

Netburst 503 351 824 323 965 260

Woodcrest 1612 815 1329 460 2967 849

Opteron 816 435 812 410 1495 485

solute performance in MFLOPS achieved by each architecture for every multithread-
ing scheme, respectively. Again here, we separate between matrices that perfectly fit
into the effective cache size of the architecture and matrices that do not. The effective
cache size is the total L2-cache size that is available for each multithreading scheme.
For example, the effective cache size for a 1 × 2 scheme on Opteron, which has a
private L2-cache for each core, is double the real L2-cache size, since every thread
has the same amount of L2-cache storage as in the serial case, but half the work-
ing set. On Netburst and Woodcrest, on the other hand, the effective cache size in
such case is the same as in the serial one, since their processing elements share the
L2-cache. Figures 11, 12, and 13 depict the actual speedup achieved by each scheme
and architecture for every matrix. Matrices are sorted according to their working sets,
while vertical lines denote the effective cache size visible from each multithreading
scheme.

It is obvious from the above tables and figures, that the scalability of the kernel is
very poor, especially when the working set does not fit in cache, despite the minimal
requirements of the algorithm for data exchange and synchronization. This fact along
with the inherent memory intensity of the algorithm lead us to the assumption that the
main bottleneck of the parallel version of SpMxV on a shared memory architecture
should be the simultaneous access from all the processing elements to the shared bus
and memory. In the following, we will focus on the performance results for each ar-
chitecture, and we present results from other performance metrics in order to solidify
the aforementioned assumption.

Effect of shared resources on performance All architectures under consideration
have a set of resources that are shared among processing elements at a certain level,



G. Goumas et al.

F
ig

.
11

Sp
ee

du
p

ac
hi

ev
ed

on
N

et
bu

rs
t

fo
r

ev
er

y
m

ul
tit

hr
ea

di
ng

sc
he

m
e.

T
he

fir
st

ve
rt

ic
al

li
ne

de
no

te
s

th
e

ef
fe

ct
iv

e
ca

ch
e

si
ze

fo
r

th
e

se
ri

al
ex

ec
ut

io
n

an
d

th
e

1
×

2
m

ul
tit

hr
ea

di
ng

sc
he

m
e,

an
d

th
e

se
co

nd
on

e
de

no
te

s
th

e
ef

fe
ct

iv
e

ca
ch

e
si

ze
fo

r
th

e
2

×
1

an
d

2
×

2
m

ul
tit

hr
ea

di
ng

sc
he

m
es



Performance evaluation of SpMxV on modern architectures

F
ig

.
12

Sp
ee

du
p

ac
hi

ev
ed

on
W

oo
dc

re
st

fo
r

ev
er

y
m

ul
tit

hr
ea

di
ng

sc
he

m
e.

T
he

fir
st

ve
rt

ic
al

li
ne

de
no

te
s

th
e

ef
fe

ct
iv

e
ca

ch
e

si
ze

fo
r

th
e

se
ri

al
ex

ec
ut

io
n

an
d

th
e

1
×

2
m

ul
tit

hr
ea

di
ng

sc
he

m
e,

an
d

th
e

se
co

nd
on

e
de

no
te

s
th

e
ef

fe
ct

iv
e

ca
ch

e
si

ze
fo

r
th

e
2

×
1

an
d

2
×

2
m

ul
tit

hr
ea

di
ng

sc
he

m
es



G. Goumas et al.

F
ig

.1
3

Sp
ee

du
p

ac
hi

ev
ed

on
O

pt
er

on
fo

r
ev

er
y

m
ul

tit
hr

ea
di

ng
sc

he
m

e.
T

he
ve

rt
ic

al
li

ne
s

de
no

te
th

e
ef

fe
ct

iv
e

ca
ch

e
si

ze
fo

r
th

e
se

ri
al

ex
ec

ut
io

n,
th

e
1

×
2,

2
×

1,
an

d
2

×
2

m
ul

tit
hr

ea
di

ng
sc

he
m

es
,r

es
pe

ct
iv

el
y



Performance evaluation of SpMxV on modern architectures

ranging from resources inside the processor to the main memory.1 On Netburst, which
is a SMT machine and shares resources inside the processor, SpMxV fails to scale
well with the 1 × 2 (1.14 speedup) and 2 × 2 (2.48 speedup) schemes, even when
the working set of the algorithm fits in L2-cache. This is quite predictable, since both
threads have the same requirements for computational resources because they execute
the same code. This is an inherent limitation of SMT machines and is also discussed
in [3, 14, 16].

The other two platforms, Woodcrest and Opteron, experience linear speedup in
almost every case where the working set of the kernel fits in the cache. On the other
hand, speedup decreases dramatically for almost every scheme when the working set
exceeds the L2-cache size. In order to examine whether there is a bus contention that
leads to that performance degradation, we collected results from several events logged
by the processors’ performance counters. It should be noted that these events were
measured only during the actual execution of the kernel—monitoring was turned off
during the initialization phase.

At first, we measured the L2-cache misses on every processor. The normalized
(over the serial case) results are depicted in Fig. 14. Additionally, we have measured
the average request bus latency on Netburst, which is the average time a memory
request should wait on the Input-Output Queue (IOQ); the IOQ is the interface of the
processor to the main memory subsystem. Larger values of this metric indicate that
there exist bus contention, since memory requests should wait longer in order to gain
access to the bus. More technically, in order to obtain this metric, we have divided the
metric IOQ_active_entries, which counts the cycles where at least one request
was pending on IOQ, by the metric IOQ_allocations, which is the total number
of requests served through the IOQ. Figure 15 shows the increase over the serial case
of average IOQ waiting times for each multithreading scheme considered.

In order to quantify the bus contention problem on Woodcrest, we have used
a different metric; namely, we have measured the bus utilization. Again in this
case, we used primitive performance metrics provided by the processor to ex-
tract the desired metric. More accurately, we have divided the total number of bus
cycles where a data transaction was in progress from whichever processing ele-
ment (BUS_DRDY_CLOCKS.ALL_AGENTS) by the total number of bus cycles con-
sumed during the execution of SpMxV (CPU_CLK_ UNHALTED.BUS). This metric
is presented in Fig. 16. Figure 14 clarifies that when the working set of the algorithm
is smaller than the effective cache size that a multithreading scheme “sees,” the L2-
cache misses are reduced relative to the serial version of the kernel. In this case as
well, all multithreading schemes on every processor, except for the 1 × 2 and 2 × 2
schemes on Netburst, experience linear speedup. These schemes fail to scale on Net-
burst because the two threads have similar instruction mixtures, and thus contend on
shared resources inside the processor. The metrics of average bus latency on Net-
burst and bus utilization on Woodcrest presented on Figs. 15 and 16 exhibit a similar
behavior as the L2-cache miss rate.

1Although Opteron is a NUMA machine, no NUMA-aware data allocation is performed in the context of
this discussion, thus there still exists contention on the HyperTransport link of a single core. See Sect. 4.3.3
for a more detailed consideration of NUMA issues.
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To better contemplate the relation between the different multithreading schemes
and the effective cache size, as well as their impact on performance, we consider
the example of Opteron. When ws < 2 MB, the working set of the algorithm fits in
cache for every scheme, and thus the kernel experiences almost linear speedup. When
2 MB < ws < 4 MB, the working set does not fit in cache for the 1 × 2 and 2 × 1
schemes, but it still fits for the 2 × 2 scheme. Consequently, the first two schemes
experience an increased amount of cache misses and lower performance, whereas the
2 × 2 scheme still achieves linear speedup. Finally, when ws > 4 MB, cache misses
increase, and performance drops for every scheme.

All of the above metrics, L2-miss rates, bus latency, and bus utilization, exhibit
a similar behavior; when the matrices are too small to fit in the effective cache of a
multithreading scheme, their values are almost equal to the serial case; for matrices
with growing sizes, these metrics increase considerably. This fact along with the ei-
ther way memory intensive nature of the algorithm confirms our initial assumption
that the major problem of this kernel on shared memory machines is the bus con-
tention. It should also be noted here that the increase in L2-cache miss rate relevant
to the serial case for larger matrices is due to the bus contention as well. Large matri-
ces lead to increased miss rates, and thus more main memory requests, which press
harder the common bus, which in turn cannot service these requests in time. Conse-
quently, subsequent load instructions also miss. Moreover, the contended bus hinders
the hardware prefetcher from fetching useful data in time.

A special comment should be made for the case where a superlinear speedup is
encountered when the working set is smaller than the effective cache size. Let css be
the effective cache size of the serial case, i.e., the physical cache size of the archi-
tecture, and csp the effective cache size of a multithreading scheme. If 0 < ws < css,
then neither the serial nor the multithreaded version experience cache misses, thus
an almost linear speedup is encountered. If css < ws < csp, however, only the ser-
ial case experiences misses, since in the multithreaded one the working set has been
split among threads, and thus fits in the corresponding caches. As a result, this im-
provement of cache miss rate offers an extra boost to performance that adds to the
already linear speedup, thus leading to superlinear behavior. Finally, though we did
not have any performance metric that could reveal similar contention issues on the
Opteron processor, there seems to be contention in the HyperTransport links, when no
NUMA-aware data allocation is used. We further examine such an allocation scheme
in the following section.

The shared cache as an additional benefit For matrices whose working set does not
fit in L2-cache, it can be observed from Table 10 that schemes which share the L2-
cache provide better speedup than schemes which do not. For example, on Woodcrest
the 1 × 2 scheme achieved much higher, and almost optimal speedup (1.96), than
the 2 × 1 scheme. Moreover, this scheme achieved a superlinear speedup for the
first 20 matrices in Fig. 12, for which a 25%–90% reduction in total cache misses
was encountered. For matrices that do not fit in cache, the 1 × 2 scheme achieved
a maximum of 25% reduction of L2-cache misses over the 2 × 1 scheme. Similar
behavior was also observed on Netburst, although the speedup for both cases when
ws > cs were rather small due to the inherent limitations of the HyperThreading
technology.



Performance evaluation of SpMxV on modern architectures

Fig. 17 Contention of main memory requests on Opteron. All data are stored on a single memory node
(right bank). As a result, one core needs to perform remote memory accesses (dashed line), which eventu-
ally lead to contention on the common memory controller and memory bus (bold line)

4.3.3 NUMA architectures

Among the three hardware platforms under consideration, we expected Opteron to
provide the best scalability due to the advantage that the NUMA architecture offers.
Nonetheless, Fig. 13 and Table 10 do not indicate any benefit from Opteron’s special
architecture, which means that the NUMA characteristics of the architecture are not
utilized effectively. In order to evaluate this assumption, we used the performance
counters of the processor to measure the memory requests served by each memory
controller (DRAM_accesses event). Indeed, the memory requests were quite un-
evenly distributed among the two memory controllers with the one controller serving
698 times more requests than the other for the 1 × 2 scheme and 452 times for the
2 × 2 scheme. That means that almost all requests were served from a single con-
troller, which was finally overwhelmed. This is graphically depicted in Fig. 17.

Although the Linux kernel used for experiments supports NUMA architectures
and always attempts to allocate pages on the local memory of each node, it failed
to do so for the parallel version of the SpMxV kernel. This was anticipated since
the data allocation in our implementation happens in the main thread before any
other thread is spawned. Consequently, all the necessary data is allocated on the
local memory of a single node. In order to overcome this problem, we have im-
plemented a “NUMA-aware” allocation of the algorithm’s data structures. We used
the numa_alloc_onnode() function of the libnuma library, so as to locally
allocate the parts of a, row_ptr, col_ind, and y structures that are used by each
thread. A copy of the input vector x, which is used equally from all threads, is allo-
cated on every node’s local memory in order to minimize remote memory accesses.
It should be noted here, however, that the function used does not perform a strict
allocation, i.e., it attempts to allocate the requested data on the specified node’s lo-
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cal memory, but it does not guarantee that specific allocation; if a page cannot be
allocated locally, it will be allocated on another node’s memory.

The NUMA-aware data allocation offered a considerable performance improve-
ment (Fig. 18), especially for matrices with large working sets (ws > cs). The aver-
age speedup for matrices that do not fit in the effective cache reached an almost linear
1.96, instead of just 1.53 for the 2 × 1 scheme, and an impressive increase from 1.81
to 3.02 was observed for the 2 × 2 scheme. The 1 × 2 scheme, on the other hand,
experienced a slight decrease from 1.61 to 1.55.

5 Optimization guidelines

Summarizing the results of the preceding analysis, a number of optimization guide-
lines can be proposed. These guidelines, as a result of our extensive experimentation
with the SpMxV kernel on modern commodity architectures, delineate our point of
view of the most important performance bottlenecks and how these should be ad-
dressed effectively. The steering performance impediment that should drive any sub-
sequent optimization at the first place is the memory intensity of the kernel. Secondly,
one should take into consideration the computational part of the kernel. Specifically,
we suggest the following for the single-threaded version of the kernel.

1. Reduce as much as possible the working set of the algorithm. Reducing the work-
ing set, e.g., by using 32-bit or 16-bit integers for the indexing structures of the
matrix, by applying blocking schemes (as in [5, 12, 20, 26]) that effectively reduce
the size of indexing structures, by applying compression (as in [28]), or by other
means, will certainly increase the computation to memory operations ratio, thus
alleviating the pressure on memory bus and give better chance to pending memory
requests to be served in time.

2. If you need padding, do it conservatively. Some blocking schemes, which try to
effectively reduce the working set of the algorithm, pad with zeros in order to
artificially construct specific patterns which can be effectively computed. This
padding could lead to working set increase and excessive useless computations
that will ruin performance. Thus, the BCSR format used in [5, 12, 26] is expected
to be beneficial only in the subset of matrices that contain many dense subblocks.

3. Use cache-reuse optimizations for irregular matrices only. One needs to identify
matrices with problematic access on the x vector and apply cache reuse optimiza-
tions only to them.

4. Take into consideration the effect of short rows. Some optimization approaches
split the matrix into a sum of submatrices (as in [1, 26]). In this case one should
take care that the submatrices do not fall into the category of matrices with short
row lengths or even contain a large number of empty rows. Alternatively, one may
insert an additional outer loop in the multiplication kernel (as in [20]). This may
also incur significant overheads, especially in matrices with short rows.

5. Reduce indirect memory referencing. This could be achieved by exploiting regular
structures within the matrix such as full diagonals (as in [1]) or dense subblocks
(e.g., BCSR format as in [5, 12, 26]).



Performance evaluation of SpMxV on modern architectures

F
ig

.1
8

O
bt

ai
ne

d
sp

ee
du

p
fr

om
a

“N
U

M
A

-a
w

ar
e”

da
ta

al
lo

ca
tio

n
on

O
pt

er
on



G. Goumas et al.

6. Quantify the effect of hardware prefetching prior to applying software prefetching.
Modern architectures provide intelligent hardware prefetchers that can effectively
predict access patterns and bring useful data in cache before any actual request
from the processor. One could additionally utilize the performance monitoring
hardware of the processor and examine whether there exist cache misses for a par-
ticular matrix that could be further reduced. If this is the case, software prefetching
can be employed to prefetch data from the input vector x.

As far as the multithreaded version of the kernel is concerned, we suggest the
following guidelines.

1. Control, if possible, the way threads access the bus of an SMP machine. It is ap-
parent from the above experimental analysis that the main bottleneck for SpMxV
on a SMP machine is the simultaneous access of all threads to the common bus.
Thus, controlling the way threads are requesting bus resources would be beneficial
to the overall performance. However, this task is not straightforward and involves
a number of scheduling issues for arbitrating the threads’ access to the common
bus. This kind of optimization on SMP machines is a matter of our future research.

2. Exploit any NUMA capabilities of your architecture. The paradigm of Opteron
which achieved a considerable performance improvement when a NUMA-aware
data allocation scheme was used, is illuminating. The main advantage of NUMA
machines over SMP is that they eliminate the contention on the common bus,
thus exploiting the characteristics of such machine, while computing the memory
intensive SpMxV kernel, could only be beneficial.

3. Favor the use of common cache for shared thread data. This is an implication
that is not obvious. The irregularity of accesses on the input vector x leads to
similar, though irregular, access patterns between different threads. Thus, a thread
may benefit from its sibling’s work running on the same core, which sometimes
happens to bring a priori common data in L2-cache.

6 Conclusion—future work

In this work, we have performed an extensive experimental evaluation of the SpMxV
kernel for single and multi-threaded versions, on a variety of modern commodity ar-
chitectures. SpMxV is a critical computational kernel and comprises the core part
of a variety of scientific applications. However, this kernel has a set of inherent per-
formance limitations, which though discussed to some extent in the literature, were
not deeply understood and quantified. In this paper, we took an in-depth look at the
performance bottlenecks of this kernel using a set of metrics ranging from simple
MFLOPS measures to advanced performance metrics obtained from modern proces-
sors’ performance counters. These metrics provided us with a clear insight into the
problems reported in the literature, and into the extent that these problems affect the
actual performance of the kernel on modern architectures. As far as the multithreaded
version is concerned, we examined the effect of the common datapath from the main
memory to the different processing elements (common bus or common memory con-
troller), the effect of the shared cache, and the benefits that NUMA capabilities can
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provide to the kernel. The dominating problem of the SpMxV kernel on modern com-
modity architectures is the memory bottleneck. Thus, any optimization targeting the
kernel should first focus at minimizing the memory traffic. When the memory traffic
problem is attacked, the computational part of the kernel may become significant,
thus further optimizations targeting the computations could increase performance.
Contrary to previous work performed on older platforms, modern microprocessors
do not suffer from the irregular and indirect references to the input vector. How-
ever, these characteristics of the algorithm could still pose a performance bottleneck,
but for a certain set of matrices with a close-to-random distribution of nonzero ele-
ments. An additional problem of the kernel, yet not dominant, is the presence of a
large amount of very short rows, in which case the loop overhead will dominate the
computational part of the kernel. The experience obtained from this in-depth experi-
mentation was summarized as a number of optimization guidelines.

As a future work for the single-threaded version of the algorithm, we intend to
evaluate existing storage formats that minimize the working set of the algorithm and
propose novel ones that better achieve this goal. Optimization on the computational
part of the kernel, e.g., vectorization, in combination with existing optimization tech-
niques will also be examined and evaluated. Matters of index or data compression in
order to minimize the working set of the algorithm comprise active research. Invent-
ing and applying successful heuristics in order to select the best, in terms of SpMxV
performance, storage method for a specific matrix is an additional future research
aspect.

The multithreaded version of the kernel provides additional research prospects. We
intend to evaluate advanced partitioning schemes and methods of assigning work to
processing elements, either statically or dynamically that could incorporate concepts
such as loop overheads or cache sharing. We will also focus on multicore machines
with more than four hardware threads in order to address the even more challeng-
ing problem of bus contention in that case, and we will investigate multithreading
schemes that could arbitrate the way threads are accessing the common bus so as to
maximize its utilization. Finally, we will implement, evaluate, and optimize the kernel
on more sophisticated architectures such as the Cell processor and general-purpose
GPUs, as well as consider alternative programming models, such as streaming pro-
gramming. Effectively porting the SpMxV kernel to such architectures and evaluating
its behavior is a particularly interesting research topic.
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