
Support for Concept Hierarchies in DHTs ∗

Athanasia Asiki, Katerina Doka, Dimitrios Tsoumakos and Nectarios Koziris
Computing Systems Laboratory, School of Electrical and Computer Engineering

National Technical University of Athens
Email: {nasia, katerina, dtsouma, nkoziris}@cslab.ece.ntua.gr

Abstract

Concept hierarchies greatly help in the organization and
reuse of information and are widely used in a variety of ap-
plications, such as data warehouses. In this paper, we de-
scribe a method for efficiently storing and querying data
organized into concept hierarchies and dispersed over a
DHT. In our method, peers individually decide on the level
of indexing according to the incoming queries. Roll-up and
drill-down operations are performed on a per-node basis
in order to minimize the number of floods for answering
queries on varying levels of granularity. Initial experimen-
tal results support this argument on a variety of workloads.

1 Introduction

A concept hierarchy (or taxonomy) defines a sequence
of mappings from more general to lower-level concepts.
For example, Figure 1(a) shows a simple hierarchy for
the location concept, where Address < ZipNo <
City< Country and one for time where a partial order
is defined. Concept hierarchies are important because they
allow the structuring of information into categories, thus en-
abling its search and reuse. Specifically, users may view
data at different levels of a dimension hierarchy: With the
roll-up operation we climb up to a more summarized level
of the hierarchy, while a drill-down defines the opposite op-
eration (i.e., navigating to lower levels of the hierarchy with
increased detail).

While there has been considerable work in sharing sim-
ple relational data using both structured and unstructured
overlays (e.g., [3–5]), no special consideration has been
given to data supporting hierarchies. In [6], hierarchies are
exploited to enable faster computation of the possible views
and a more compact representation of the data cube. An-
other approach is the DC-Tree [1], a fully dynamic index

∗This work is partly supported by the European Commission through
the FP6 GREDIA IST Framework Programme.

Week

Day

Year

(b)

Quarter

Month

Country

City

ZipNo

Address

(a)

Figure 1. A concept hierarchy for dimension
(a) Location (b) Time (lattice).

structure for data warehouses modeled as data cubes. Nev-
ertheless, these are strictly centralized solutions. We inves-
tigate the problem of indexing and querying such data in
a way that preserves the semantics of the hierarchies and
is efficient in retrieving the requested values in a fully dis-
tributed environment.

Consider, as an example, the computational center of a
supermarket chain that holds records of sales. Such his-
torical data are aggregated (usually off-line) and queried
for discovering interesting trends/associations. Instead of a
centralized data warehouse, the management prefers a hori-
zontal partitioning of the database (according to some met-
ric, e.g., geographically) so that they can perform on-line
queries on the multiple dimensions. Moreover, it would be
very important if simple mining operations (such as roll-up
and drill-down) could be performed, as opposed to more
complex queries that instead can be processed off-line.

Let us assume that the company’s database contains a
location dimension that relates to the suppliers’ addresses.
This dimension is organized along the hierarchy depicted
in Figure 1(a) and we also assume that Sales is the fact
of interest. In a plain DHT system, one would have to
choose a level of the suggested hierarchy in order to hash
all tuples to be inserted to the system. Assuming the tuples
are hashed according to the city attribute, there will be a
node responsible for tuples containing the value Athens, one
for Milan, etc. This structure can be very effective when
answering queries referring to the chosen attribute level,
whereas queries concerning other levels of the hierarchy de-
mand global processing.

The solution of multiple insertion of each tuple by hash-
ing every hierarchy value is not viable: As the number
of levels increase, so does the redundancy of data and
the storage sacrificed for this purpose. While exact-match
queries would be answered without global processing, this
scheme fails to encapsulate the hierarchy relationships: One
cannot answer simple queries, such as “Which country is
Athens part of ” or “Which addresses correspond to zip-code
‘15341’”.

In this paper, we present a first attempt to produce a
system that efficiently stores and queries multi-dimensional
data organized in hierarchies. First, we address the effi-
ciency of lookups: Our system should be able to provide
with answers on different levels of the data hierarchies. As
we mentioned before, queries over a hierarchy level other
than the default one will result in multiple floods. Our solu-
tion takes the query granularities into account, adjusting the
indexing structure to favor performance.

Second, we intend to provide a system that will preserve
all hierarchy-specific information. Hash-based systems nat-
urally discard such information: Through hashing on a sin-
gle or multiple levels of the hierarchy, a naive data insertion
would fail to preserve the associations between the stored
keys. In our technique, a tree-like data structure is used to
store data and maintain indices to related keys, enabling us
to respond to more complex, hierarchy-based queries.

2 An Adaptive Indexing Scheme to Support
Concept Hierarchies

In this paper, we propose a method for storing, index-
ing and querying hierarchical data in a DHT-based network.
Our goal is to enable efficient querying while preserving the
hierarchy semantics. The data items are structured accord-
ing to a concept hierarchy with L levels, which defines the
mapping from general to lower-level concepts. We consider
that the hierarchy root level (or root level) is l0. We define
that la < lb, if and only if la is closer to l0 than lb, namely
la is higher in the concept hierarchy than lb. Each tuple to
be stored in the DHT is actually a record in the fact table
of our data warehouse. It contains values for each level li
of the hierarchy and numerical values corresponding to the
facts of interest (e.g., Sales). Our data is a tree with each
value having at most one parent. In this section, we de-
scribe in detail how the data insertion, indexing and lookup
is performed.

2.1 Data Insertion

The insertion of tuples is performed as follows: Initially,
a level of the concept hierarchy is selected. The values of
this level are hashed to be used as keys. In the rest of the
paper, we refer to this level as the pivot level. Each group of

tuples with same value in the pivot level is assigned to the
node with ID numerically closest to its key.

Each peer organizes the tuples with same value in the
pivot level in tree structures that preserve their hierarchical
nature. As a consequence, each distinct value of the pivot
level corresponds to a tree that reveals part of the hierarchy.

As an example, let us assume that tuples follow the con-
cept hierarchy for location depicted in Figure 1(a) with
city as the globally defined pivot level. The first tuple
to be inserted is assigned an ID that derives from applying
our hash function over the city’s value ‘Athens’ and forms
a plain list. As data items with the same ID keep arriving
at this node, different values at levels lower in the hierar-
chy than the pivot level create branches, thus forming a tree
structure.

2.2 Data Lookup and Soft-state Indices

Queries concerning the pivot level are exact match
queries and can be answered within O(logN) steps, N be-
ing the number of participating peers. Queries concerning
any of the other levels cannot be answered unless flooded
across the DHT. In order to exploit the knowledge acquired
from flooded queries, we introduce soft-state bidirectional
indices to our proposed structure. These indices are cre-
ated on demand when a flooded query is answered: When a
node answers a query received through overlay flooding, it
checks whether a roll-up or drill-down is necessary. If this
is not the case, the query initiator starts the procedure of cre-
ating an index, as soon as it receives the complete answer. It
hashes the value of the requested key found through flood-
ing and inserts it in the DHT along with IDs of nodes having
the actual tuples. The node that receives the index informs
the nodes having the tuples for the successful index cre-
ation. The next time that a query for this key is initiated, the
lookup operation locates the node holding the index, finds
out the IDs of nodes with relevant tuples and retrieves them.

The created indices are soft-state, in order to minimize
the redundant information. This means that they expire af-
ter a predefined period of time (Time-to-Live or TTL). Each
time that an existing index is used, its TTL is renewed. This
constraint ensures that changes in the system (e.g., data lo-
cation, node unavailabilities, etc) will not result in stale in-
dices, affecting the validity of the lookup mechanism.

The nodes holding the tuples of the indexed value need to
know the existence of an index, in order to erase it if a roll-
up or drill-down takes place. The bidirectional indices are
introduced only in order to ensure data consistency, even
though the indices are soft-state. We want to prevent the
existence of stale indices after a roll-up or drill-down and
at the same time to avoid increasing the complexity of the
system by updating them.

In the example of Figure 2(a), the lookup for the hashed
value of ‘Athens’ is answered by the corresponding node.

GR

16674

Prom. Ioann.

15341

Terps.

GR

54234

Verg.

57986

Pel. Xar. Tsim.

Thessaloniki

Athens

Paris Rome

Node querying
for Athens

Lyon

Que
ry

an
sw

er

Berlin

(a)

GR

16674

Prom. Ioann.

15341

Terps.

GR

54234

Verg.

57986

Pel. Xar. Tsim.

Thessaloniki

Athens

Paris Rome

Node querying
for GR

Lyon

Q
ue

ry
A

ns
w

er Que
ry

an
sw

er

Create
Index

Node with
Index for GR

Berlin

(b)

GR

16674

Prom. Ioann.

15341

Terps.

GR

54234

Verg.

57986

Pel. Xar. Tsim.

Thessaloniki

Athens

Paris
Rome

Node querying
for GR

Lyon

GR

Berlin

(c)
Figure 2. (a) Lookup in the DHT overlay for ‘Athens’ when the city is selected as pivot level.
(b)Lookup for value country ‘GR’, which ends up to flooding and creation of index when the query is
answered. (c) Lookup for the indexed value ‘GR’.

On the other hand, the lookup for the hashed value ‘GR’
ends up with no results, as shown in Figure 2(b). The next
step is the flooding of the query and the nodes with the keys
‘Athens’ and ‘Thessaloniki’ answer with the corresponding
tuples. The query initiator, which now knows the IDs of the
nodes that answered the query, inserts these IDs to the node
responsible for the value ‘GR’. This node now has an index
pointing to the node ‘Athens’ and another to node ‘Thes-
saloniki’. In the future, queries for ‘GR’ will be answered
without flooding. The node responsible for the ‘GR’ key
will forward the query to all relative nodes directly, when it
is reached by a subsequent lookup operation for ‘GR’ (see
Figure 2(c)).

2.3 Reindexing Operation

The proposed indexing method is adaptive to the query
distribution and supports customized changes of the pivot
levels at each node. Our aim is to adapt the pivot level of the
inserted tuples dynamically and independently for each tree,
in order to increase the ratio of the exact-match queries.

The re-indexing mechanism works as follows: Each
node stores a number of data trees. It maintains a record
per tree containing the number of queries per level within a
restricted time frame W. This time-frame should be properly
selected to perceive variations of query distributions and, at
the same time, stay immune to instant surges in load. When
a node answers a flooded query, it checks if the number of
queries for a level exceeds the number of queries for the
pivot level. In order to decide if a roll-up or drill-down is
needed, the level la of the queried value plays an important
role.

If the queried level la is lower than the pivot level of the
tree, then there exists only one tree consisting of tuples that
answer the query. This is also the case for all levels lower
than the pivot level. A drill-down to any level lower than
the pivot level (hence candidate level) is performed, if the
total number of queries on the candidate level is more than
a threshold% of the total number of queries for that tree
within the time frame W. If this is the case, the node finds
all the distinct values of the new pivot level and hashes them

one by one, sending the new groups of tuples to the corre-
sponding nodes. The already gathered statistic information
is sent along with one randomly selected group, in order
to maintain information about the query distribution for the
values contained in the drilled-down tree in W. Any exist-
ing indices for any value of this tree are removed. If a drill-
down is not needed, the node includes in its answer to the
initiator the fact that the queried level is lower than the pivot
level, hence it can carry on with the creation of the soft-state
index and expedite the process.

In the trees of Figure 3(a), we assume that queries for
zipNo of ‘Paris’ exceed the threshold, while this is not
the case for the other trees. A flooding query either for the
zipNo level or the address level triggers the re-indexing
mechanism. Since the threshold condition is satisfied for the
zipNo, a drill-down is performed resulting in a new state
of the existing trees depicted in Figure 3(b). The performed
drill-down does not affect the lookup method, which will
continue to return the correct results for all levels.

If the queried level la is higher that the pivot level, then
there are more than one trees with this value which have to
participate in the roll-up. Otherwise, lookups for this value
will not return complete results. A node checks for roll-up
when it answers a flooded query for a level la higher than
the pivot level. If the percentage of the queries for this level
is more than threshold% of the total queries, then the node
is positive to the potential of adopting another pivot level
for this tree. This step is indicative of an imbalance and the
query initiator is informed about this. If the query initiator
is aware of at least one node willing to roll-up to this level,
it starts a procedure to confirm the local intuition by using
statistics from all the nodes having answered the query. If
the candidate pivot level is threshold% or more of the total
number of queries, then the query initiator messages the in-
volved nodes to roll-up the corresponding trees to this level
by re-inserting these tuples. In the opposite case, no action
is taken other than the creation of a soft-state index for this
value. The partial roll-up to the country level for trees
containing the value ‘Greece’ is shown in Figure 3(c).

France

Lyon

69002 69009

Grolee Loucheur

Pivot Level

Greece

Thessaloniki

54234

Verginas Pellas

57986

Xaras Tsimiski

Pivot Level

Greece

Athens

16674

Promitheos Ioanninon

15341

Terpsitheas

Pivot Level

Vignon

France

Paris

40361 75001

LouvreRivoli Beaujon Versailles

Pivot Level

(a)

France

Lyon

69002 69009

Grolee Loucheur

Pivot Level

Greece

Athens

16674

Promitheos Ioanninon

15341

Terpsitheas

Pivot Level

Greece

Thessaloniki

54234

Verginas Pellas

57986

Xaras Tsimiski

Pivot Level

Beaujon

France

75001

Versailles

Paris

Pivot
Level

Rivoli

Pivot
Level

Paris

40361

Vignon Louvre

France

(b)

France

Lyon

69002 69009

Grolee Loucheur

Pivot Level

Beaujon

France

75001

Versailles

Paris

Pivot
Level

Rivoli

Pivot
Level

Paris

40361

Vignon Louvre

FranceGreece

Athens

16674

PromitheosIoanninon

15341

Terpsitheas

Thessaloniki

54234

VerginasPellas

57986

Xaras Tsimiski

Pivot Level

(c)

Figure 3. Sample data and roll-up / drill-down
operations

3 Experimental Results

We now present an early simulation-based evaluation of
the proposed method. We utilize a modified version of
FreePastry [2], although any DHT implementation can be
used. We assume a network of 512 nodes, which are ran-
domly chosen to initiate queries. We use synthetically gen-
erated data on a single dimension, consisting of 5000 tuples
organized in a 4-level hierarchy with one numerical fact.
The number of distinct values per level are |�0 = 100|, |�1 =
500|, |�2 = 1000| and |�3 = 5000|. The level of insertion is,
by default, l1 (city). The values per level are uniformly
distributed and each distinct value of level li has a constant
number of children in li+1. The threshold% is set to 20%,
which is considered an acceptable value in order to avoid
frequent drill-down and roll-up operations.

Queries follow the Zipfian distribution, i.e., #queries for
item i ∼ 1/iθ. We vary the value of θ in order to control
the amount of skew of the queried levels and the queried
values from each level. We measure the ratio of queries
answered without flooding (precision) and the results are
shown in Figure 4. The top graph represents the situation
when the workload is skewed towards �0 and the bottom one
when it is skewed towards �3. As θ increases, the workload
becomes more skewed and the performance of our method
improves: Reindexing is performed sooner and indices are
more frequently refreshed, thus serving more queries. We
achieve very high levels of precision (close to 100% for high
skew and over 70% when all levels and their values are uni-
formly requested). The results clearly show that the pro-
posed method outperforms the “naive” method, where no
soft-state indices are used and drill-down and roll-up opera-
tions are not performed. The performance is slightly better

0.0 0.5 1.0 1.5 2.0
Query skew (theta)

0

20

40

60

80

100

Pr
ec

is
io

n
(%

)
(D

ri
lld

ow
n)

Naive
Adaptive Indexing

0.0 0.5 1.0 1.5 2.0
Query skew (theta)

0

20

40

60

80

100

Pr
ec

is
io

n
(%

)
(R

ol
lu

p)

Naive
Adaptive Indexing

Figure 4. Precision for variably skewed work-
load

when l0 is the most popular level, since there are less dis-
tinct values for lower levels, making the re-indexing deci-
sion easier to be made. Even if a roll-up is not performed,
the soft-state indices can serve more queries for these levels.

We have also noticed that the number of roll-up and drill-
down operations adapts to the skew of the workload: Only
trees with popular values change their pivot level. For ex-
ample, when the workload is skewed towards l3, the num-
ber of documented drill-downs is only the necessary one.
Moreover, as the skew increases, the number of drill-downs
decreases, which is justified because of the limited number
of requested values.

We are currently implementing a locking mechanism to
assure full data consistency during the reindexing opera-
tions. We also work on algorithmic improvements to re-
duce communication costs in combining node statistics as
well as specific mechanisms for new tuple insertion and up-
dates. Our goal is to evaluate the performance of the pro-
posed method for more dynamic workloads and multiple
dimensions.

References

[1] M. Ester, J. Kohlhammer, and P. Kriegel. The dc-tree: A fully
dynamic index structure for data warehouses. In ICDE, 2000.

[2] FreePastry. http://freepastry.rice.edu/freepastry.
[3] R. Huebsch, J. Hellerstein, N. L. Boon, T. Loo, S. Shenker,

and I. Stoica. Querying the Internet with PIER. In VLDB,
2003.

[4] V. Kantere, D. Tsoumakos, and T. Sellis. Semantic grouping
of social networks in p2p database settings. In DEXA, 2007.

[5] B. Ooi, Y. Shu, K. Tan, and A. Zhou. PeerDB: A P2P-based
System for Distributed Data Sharing. In ICDE, 2003.

[6] Y. Sismanis, A. Deligiannakis, Y. Kotidis, and N. Roussopou-
los. Hierarchical dwarfs for the rollup cube. In DOLAP, 2003.

