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ABSTRACT
Concept hierarchies greatly help in the organization and reuse of in-
formation and are widely used in a variety of information systems
applications. In this paper, we describe a method for efficiently
storing and querying data organized into concept hierarchies and
dispersed over a DHT. In our method, peers individually decide
on the level of indexing according to the granularity of the in-
coming queries. Roll-up and drill-down operations are performed
on a per-node basis in order to minimize the required bandwidth
for answering queries on variable aggregation levels. We motivate
our approach by applying it on a large-scale Grid system: Specifi-
cally, we plan to apply our fully decentralized scheme that creates,
queries and updates large volumes of hierarchical data on-line and
replace the traditional centralized and strictly indexed information
systems. Our extensive experimental results support this argument
on many diverse configurations: Our system proves very efficient
in skewed workloads, both over single and multiple hierarchy lev-
els at the same time. It adapts to sudden changes in popularity and
effectively stores and updates large amounts of data at very low
cost.
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1. INTRODUCTION
A concept hierarchy (or taxonomy) defines a sequence of map-

pings from more general to lower-level concepts. For example,
Figure 1 shows a simple hierarchy for the Virtual Organiza-
tion concept, where VO < Category < Region < Site and
one for time where a partial order is defined. Concept hierarchies
are important because they allow the structuring of information into
∗ c©ACM, (2009). This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for
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Figure 1: A concept hierarchy for the VO and Time (lattice)
dimensions.
categories, thus enabling its search and reuse. Specifically, users
may view data at different levels of a dimension hierarchy: With the
roll-up operation we climb up to a more summarized level of the
hierarchy, while a drill-down defines the opposite operation (i.e.,
navigating to lower levels of the hierarchy with increased detail).
The drilling paths are usually defined by the hierarchies within the
dimensions. The mappings of a concept hierarchy are usually pro-
vided by application or domain experts.

Works in the field of data-warehousing (e.g., [10,18], etc) utilize
hierarchies across the dimensions of a data cube but these present
strictly centralized solutions. In the area of distributed comput-
ing, while there has been considerable work in sharing simple re-
lational data using both structured and unstructured overlays (e.g.,
[13, 14, 17]), no special consideration has been given to data sup-
porting hierarchies. We investigate the problem of indexing and
querying such data in a way that preserves the semantics of the hi-
erarchies and is efficient in retrieving the requested values in a fully
distributed environment.

To motivate our approach, we describe how it can be applied in
order to function as a distributed and efficiently operational grid
information system. Grid computing allows for coordinated re-
source sharing and problem solving in dynamic virtual organiza-
tions (VOs). A VO is a group of users from multiple institutions
who collaborate to achieve a specific goal. The goal of grid com-
puting is to provide a network of systems which, acting like a sin-
gle supercomputer, offers resources that are easily accessible. In
order for jobs to be adequately served by the most appropriate re-
sources, the information system stores all needed information about
the characteristics of the available resources over time.

There exist a number of systems that accomplish the tasks of an
information system (e.g., [3, 5], etc). Nevertheless, they either fea-
ture a central information repository or a hierarchy of aggregation
sites that introduce both scalability (single points of failure) and
performance (processing burden on a single site) issues. Work in
the area of distributed databases offers a variety of systems which
can be used to disseminate and query this information. Neverthe-
less, these schemes cannot be used to maintain the semantics of
the hierarchy and efficiently retrieve views of the data at different



granularities. This is very important for applications such as a large
scale information system, as queries naturally target different levels
of detail: Historic queries usually require grouping by the highest
hierarchy levels (e.g., group-by VO or group-by Year), whereas
online queries are naturally directed towards more detailed levels
(e.g., group-by Site or by Day).

Let us assume that the system’s database contains a location di-
mension that relates to the VO location information (see Figure 1).
Monitoring information is described by attributes (facts) such as
the number of running jobs, number of waiting jobs, available stor-
age space, total storage space, etc. Common accounting queries
could be “Give me the average CPU time" or “Give me the mini-
mum available space in Gbytes", presented to the user grouped by
a VO value.

In this paper, we present a system that efficiently stores, queries
and updates data organized in concept hierarchies. We choose the
DHT as a reliable substrate over which we store, index and query
our data, thus eliminating all possible bottlenecks created by the
hierarchical or centralized approaches mentioned before. Data pro-
ducers individually insert data to the distributed information sys-
tem. Queries are still answered, while incremental updates are
efficiently processed. Our solution takes the query granularities
into account, adjusting the indexing structure to favor performance.
Second, we intend to provide a system that will preserve all hierarchy-
specific information. In our technique, a tree-like data structure is
used to store data and maintain indices to related keys, enabling
us to respond to more complex, hierarchy-based queries such as:
“Which sites correspond to VO ‘Biomed’ " or “What category
does region ‘AsiaPacific’ belong to ". We can summarize the
contributions of this paper in the following points:

• We present a complete storage, indexing and query process-
ing system for hierarchical data. This system has many de-
sirable properties: It adapts the granularity of its indexing
according to incoming requests; Performs efficient and on-
line incremental updates; Maintains data in a fault-tolerant
and fully distributed environment.

• We motivate the usefulness of this scheme by customizing
it to serve as a high-performance information system. We
show how our method outperforms traditional approaches by
eliminating offline processing and other performance bottle-
necks.

• We present a thorough performance analysis in order to iden-
tify the behavior of our scheme under a large range of work
and data loads.

The rest of this paper is organized as follows: The next Section
summarizes related work both in exploiting hierarchies as well as
existing information systems. Section 3 defines the problem and
presents our solution in detail, while Section 4 refers to the case
study of the information system. Section 5 describes our experi-
mental setup and the collected results, while we conclude our work
in Section 6.

2. RELATED WORK
There has been significant work in the area of databases over

P2P networks. PIER [13] proposes a distributed architecture for
relational databases supporting operators such as join and aggrega-
tion of stored tuples. A DHT-based overlay is used for query rout-
ing. The Chatty Web [7] considers P2P systems that share (semi)-
structured information but deals with the degradation, in terms of
syntax and semantics, of a query propagated along a network path.

In [20], the authors propose optimization techniques for query re-
formulation in P2P database systems.

In GrouPeer [14], SPJ queries are sent over an unstructured over-
lay in order to discover peers with similar schemas. Peers are grad-
ually clustered according to their schema similarity. PeerDB [17]
also features relational data sharing without schema knowledge.
Query matching and rewriting is based on keywords provided by
the users. GridVine [8], and pSearch [19] are based on structured
P2P overlays. GridVine hashes and indexes RDF data and schemas,
and pSearch represents documents as well as queries as semantic
vectors. All these approaches offer significant and efficient solu-
tions to the problem of sharing structured and heterogeneous data
over P2P networks. Nevertheless, they do not deal with the special
case of hierarchies over multidimensional datasets.

An interesting method for representing hierarchical data is pre-
sented in [15]. The method is applied on unstructured networks
containing XML documents in order to favor the routing of path
queries. Each XML document is represented by an unordered label
tree and bloom filters are used to summarize it.

Several indexing schemes have been presented for storing data
cubes (e.g., [16, 21]). However, only few support both aggregate
queries and hierarchies. In [18], hierarchies are exploited to en-
able faster computation of the possible views and a more compact
representation of the data cube. The Hierarchical Dwarf contains
views of the data cube corresponding to a combination of the hier-
archy levels. The other approach is the DC-Tree [10]. In this work,
the attributes of a dimension are partially ordered with respect to
the valid hierarchy schema for each dimension. The DC-tree stores
one concept hierarchy per dimension and assigns an ID to every
attribute value of a data record that is inserted. These approaches
are very efficient in answering both point and aggregate queries
over various data granularities but do so in a strictly centralized
and controlled environment.

There exist multiple systems and architectures proposed to im-
plement the information system component. The most common
is the Globus Monitoring and Discovery Service (MDS) [3]. A
Grid Index Information Service (GIIS) provides an aggregate di-
rectory of lower level data stored at multiple Grid Resource Infor-
mation Services (GRISs). The hierarchical structure that can be
composed between GIISs enables complete information retrieval
by querying the top level GIIS. However, MDS has shown not to
be a solution for large-scale production because it does not scale:
Multiple client requests quickly lead to an overload of the top level
GIIS [22]. Another schema used especially for accounting and pub-
lication of user-level information is the Relational Grid Monitoring
and Discovery Service (R-GMA) [5], which supports complex type
of queries allowed by relational databases. R-GMA presents in-
formation as a single virtual database containing a set of virtual
tables, nevertheless the bulk of data need be transferred offline to a
centralized database after a period of time, with all the performance
drawbacks that this entails. The major drawback in all these meth-
ods is the fact that none of these architectures scale as the number
of data collectors increase [22]. Moreover, they all assume an of-
fline (or periodic at best) data migration phase to a more central
location where global information can be available. In contrast, we
propose a completely decentralized system where all data are con-
tinuously available and indexed at the requested granularities for
fast retrieval.

3. AN ADAPTIVE INDEXING SCHEME TO
SUPPORT CONCEPT HIERARCHIES

In this paper, we describe a system for processing bulk hierar-
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Figure 2: (a)Insertion of a new tuple with its root key not already stored in the overlay (b)Lookup using soft-state indices for a value
belonging to a non-pivot level (c)Updates for an already existing and a non-existing pivot key

chical data in a DHT-based overlay. Our goal is to enable efficient
querying while preserving the hierarchy semantics. In addition
to the fact that the DHT substrate can transparently handle node
churn, replication, reliable distributed storage, etc, our technique
offers adaptive indexing according to the granularity of the incom-
ing queries and online updating with low cost and no downtime.

3.1 Notation
Let the data items stored in the system be in the form of tuples

containing values for all levels `i of a concept hierarchy with L
levels. They also contain a numerical fact of interest (e.g., CPU
Time, Available Memory, etc) or the location of actual data.
We call the uppermost level of the hierarchy (`0) root level and its
value root key. We define that `a < `b, where (a,b ∈ [0,L− 1]), if
and only if `a is higher in the concept hierarchy (namely closer to
l0) than `b. The values of the hierarchy levels are organized in tree
structures, one per root key. Without loss of generality, we assume
that each value of `i has at most one parent in `i−1. During the
insertion of a tuple, a level of its hierarchy is chosen and its hashed
value serves as its key in the underlying DHT overlay. We refer to
this level as pivot level and to its value as pivot key. Finally, the
highest and the lowest pivot levels of the hierarchy for a specific
root key are called MinPivotLevel and MaxPivotLevel respectively.

3.2 Data Insertion
The key for each tuple is the result of a hash function applied

on the value of the selected pivot level. Tuples are assigned to the
node with ID numerically closest to the generated keys, according
to the standard DHT operations.

In our system, both initial insertions as well as incremental up-
dates are handled in a unified manner. We introduce a completely
distributed catalogue containing all the root keys and their corre-
sponding pivot keys. Each root key is stored in the node respon-
sible for it along with the list of pivot keys that have been already
inserted. The root key is also aware of the MaxPivotLevel used
during tuple insertion containing its value.

The procedure followed during the tuple insertion is as follows:
The root key for this tuple is generated and a lookup for this key
takes place in the DHT overlay. If the root key exists, the tuple ends
up in the node responsible for it. We consider an insertion to be the
procedure followed in case that the root key does not already exist
in the overlay. Otherwise, the update procedure is followed (see
Section 3.5).

In case of an insertion, the tuple or the group of tuples with the
same root key arrive at the node responsible for it. The node selects
a pivot level (either a random or a predefined one) and the pivot

key(s) of the tuple(s) is (are) calculated for the appropriate pivot
level. Each new pivot key is added to the list of pivot keys. Finally,
each tuple is stored in the node with the ID closest to its pivot key.

Each peer organizes the tuples in trees that preserve their hier-
archical nature. As a consequence, each distinct value of the pivot
level corresponds to a tree that reveals part of the hierarchy. When
a new tuple arrives at the node responsible for it, the node searches
its keys. If no tuples for this pivot key have been stored, a new tree
with a single branch is created. In the opposite case, a new branch
is added below the value of the pivot level with the new values of
the remaining levels.

An example of insertion is shown in Figure 2(a). A graphic con-
vention is that solid lines represent existing indices, while dotted
lines correspond to logical steps followed during the described pro-
cedure. Let us assume that tuples follow the VO hierarchy depicted
in Figure 1 with `2 (Region) as the globally defined pivot level
for initial insertions. A tuple with root key ‘esr’ is inserted in the
overlay. Since the specific root key does not already exist, a new
index is created in the corresponding node. Afterwards, Region
is selected as pivot level and the tuple is forwarded to the node
responsible for this key, which creates a new tree with only one
branch for this tuple.

3.3 Data Lookup and Soft-state Indices
Queries concerning the pivot level are exact match queries and

can be answered by the DHT lookup operation. Queries for any
other level cannot be resolved unless flooded across the DHT. To-
wards the exploitation of the knowledge acquired by flooded queries,
we introduce soft-state bidirectional indices to our scheme. When
a node answers a flooded query, it checks whether a roll-up or drill-
down is necessary. If this is not the case, the query initiator starts
the procedure of creating an index, as soon as it receives the com-
plete answer. It inserts the result of hashing the requested value in
the DHT along with IDs of nodes having the actual tuples. The tu-
ple holders also mark the specific value as indexed. The next time
that a query for this key is initiated, the lookup operation locates
the node holding the index, finds out the IDs of nodes with relevant
tuples and retrieves them.

The created indices are soft-state, in order to minimize the redun-
dant information. This means that they expire after a predefined
period of time (Time-to-Live or TTL). Each time that an existing
index is used, its TTL is renewed. This constraint ensures that
changes in the system (e.g., data location, node departures, etc)
will not result in stale indices, affecting the validity of the lookup
mechanism. While memory becomes a cheaper commodity by the



day, the plain size of data discourages an “infinite” memory alloca-
tion for indices. Therefore, after the number of indices has reached
a limit Imax, the creation of a new index results in the deletion of
the oldest one. Calibrating Imax for performance without increasing
it uncontrollably entails knowledge of our data (e.g., how skewed
each hierarchy is). Overall, the system tends to preserve the most
“useful” indices, namely the ones directed towards the most fre-
quently queried data items.

The nodes with actual tuples of the indexed value need to know
the existence of an index, in order to erase it after a re-indexing
operation. The bidirectionality of the indices is introduced only
to ensure data consistency, despite of them being soft-state. Dur-
ing re-indexing operations, the locations of stored tuples change
and indices correlated to these tuples need either to be updated or
erased, preventing the existence of stale indices. Our choice is to
erase them, so as to avoid increasing the complexity of the sys-
tem. Detailed information for an existing index is not essential for
the node, where the tuples are stored. A simple mark for each in-
dexed value is adequate in order to erase its index, if it is needed.
In this case, some redundant operations for erasing expired indices
may occur. If there are no memory restrictions and local process-
ing is preferable to bandwidth consumption, indexed values can be
marked with a time-stamp. Every lookup for an indexed value re-
news the TTL in both sides of the index and only valid indices are
erased during re-indexing operations.

In the example of Figure 2(b), a query for ‘SEE’ is resolved di-
rectly by the lookup operation of the DHT protocol. Lookups for
values of the root level are processed utilizing the indices created
during insertions. Nevertheless, any query for any level other than
the pivot level or the root level ends up with no results. For exam-
ple, a query for date items described by ‘Tier2’ does not contact
the two nodes with the corresponding trees before the creation of
the index. The next step is the flooding of the query and the nodes
storing the keys of ‘Spain’ and of ‘Germany’ are reached. The
query initiator, which is now aware of the existing pivot keys, cre-
ates an index and these pivot keys are stored to the node responsible
for the value ‘Tier2’. This node now has an index pointing to the
node ‘Spain’ and another to node ‘Germany’. In the future, queries
for ‘Tier2’ will be answered without flooding, utilizing the created
soft-state indices. As shown analytically in Figure 2(b), a subse-
quent query for the Category ‘Tier2’ reaches the node respon-
sible for this key, which in turn forwards the query to all relative
nodes directly. The nodes storing the trees with the queried value
return only the relevant tuple(s).

3.4 Re-indexing Operation
Our goal is the described system to dynamically adapt on a per

node basis to online queries, so as to increase the ratio of the non-
flooded queries. In order to achieve this goal, we introduce two
re-indexing operations regarding the selection of pivot level: roll-
up towards more general levels of the concept hierarchy and drill-
down to levels lower than the pivot level.

The idea behind individual re-indexing of stored tuples is based
on the fact that each node has a global view of the queries regarding
each level `i < pivotlevel, but only a partial view of the queries for
each level `i > pivotlevel . Therefore, it has sufficient information
to decide if a drill-down will favor the increase of the exact-match
queries for its values. On the other hand, a node has to cooperate
with other peers that store a value of a level `i < pivotlevel in order
to decide if this level is more appropriate.

The re-indexing of the data tuples (through a choice of a differ-
ent pivot level) is performed on a per-tree basis, requiring no global
coordination. Each node collects information using the incoming

queries and finds out if the pivot level of a tree remains its most
popular level. Otherwise, the node proceeds with the re-indexing
of the tuples of this tree. The popularity of the levels of a tree is
estimated based on their average rates of incoming queries (hence
InQ). A node maintains one record per tree with these rates during
a restricted time-frame W. This parameter should be properly se-
lected to perceive variations of query distributions and, at the same
time, stay immune to instant surges in load.

In more detail, the mechanism works as follows: A node may
check if a re-indexing is required based on the objective to achieve.
The implemented strategy implies that a node decides whether a
roll-up or drill-down is required when it answers a flooded query or
when a number of queries for indexed values have been received.
While the main objective is the increase of the queries answered
without flooding, this strategy targets to the increase of exact match
queries as well.

The number of queries for indexed values triggering a node to ex-
amine a possible re-index may vary and has an impact to the adap-
tiveness of the system. A small value indicates that the potential of
re-indexing is examined more often and thus more re-indexing op-
erations may take place. Nevertheless, if a decision has erroneously
been made, it can be easily corrected. However, during re-indexing
operations, existing indices are deleted and this may have a nega-
tive impact on the system. In the opposite case, the system tends to
depend more on the effectiveness of the indices. We have observed
that re-indexing operations are necessary, when popular values be-
long to levels with several distinct values. Indices perform better
for higher levels with less values, since there is a high probability
for repeated utilization of an index.

A node decides if a re-indexing operation will favor the increase
of non-flooded queries based on the ‘popularity’ of each level ac-
cording to the procedure described in basic steps in Algorithm 1.
A thr parameter is used to indicate if a re-indexing operation is re-
quired. The following criterion defines if a re-indexing to a level `q
is allowed:

InQ`q > thr×
i=L−1

∑
i=0

InQ`i where `q 6= pivotlevel, thr ∈ [0,1]

In the described algorithm, two possible cases are considered
to indicate the necessity of a re-indexing operation: The queried
level `q lies lower in the hierarchy than the pivot level of the tree
(`q > pivotlevel). Only one tree stores the values of a level below
the pivot level. Therefore, the specific node is aware of the exact
popularity of these values and feels ‘confident’ to decide if a drill-
down is needed. If the most popular level `pop of the tree lies below
the pivot level and the defined criterion is valid for its InQ, then a
drill-down to this level is decided. After the decision for drill-down
is made, the node finds all the distinct values of the new pivot level
and hashes them one by one, sending the new groups of tuples to the
corresponding nodes. The already gathered statistic information is
sent along with one randomly selected group, in order to maintain
information about the query distribution for the values contained in
the drilled-down tree within W. Any existing indices for any value
of this tree are removed. If a drill-down is not needed, the node
includes in its answer to the initiator the fact that the queried level
is lower than the pivot level, hence it can carry on with the creation
of the soft-state index and expedite the process.

The queried level `q lies higher that the pivot level of the tree
(`q < pivotlevel). In this case, there are more than one trees with
this value needed to participate in a possible roll-up to this level.
Otherwise, lookups for this value will not return complete results.
If the threshold criterion is satisfied for the `q, then the node is
positive to the potential of adopting this level as pivot level for this



tree. This step is indicative of an imbalance and the query initiator
is informed about this. The query initiator decides for a re-indexing
operation according to the procedure described in Algorithm 2. If
the query initiator is aware of at least one node willing to roll-up to
this level, it starts a procedure to confirm the local intuition by using
statistic information provided by all the nodes having answered the
query. After receiving the tuples containing the number of InQ per
level, it calculates the total value of InQ per level.

The calculation of the total rate of InQ per level is not straightfor-
ward. Queries concerning an `i for any i ≥ pivotlevel end up only
in one node and are thus counted once for statistic purposes. The
same property is not valid for queries requiring values of higher
levels than the pivot level. These queries reach more than one node
and are counted in all of them. During the gathering of statistic
information for roll-up decisions, the problem of multiple counting
of such queries in the calculation of the rate for each level needs
to be solved. The complexity in the calculation of the overall rate
of InQ increases since more than one pivot levels may exist for the
involved trees in the re-indexing procedure. For example, let us as-
sume that the state of trees with the ‘biomed’ as their root key is the
one shown in Figure 3(b). In this case, the value of InQ for ‘Tier2’
is sent twice by the nodes with the trees of ‘Tier2’. To avoid this
situation, a path containing the values for all levels in [0, pivotlevel]
is sent along the statistic information to the querying node, so as to
make the correct decision. Through this procedure, the querying
node is also informed for the MinPivotLevel and MaxPivotLevel of
all existing trees containing the queried value (hence NotPivotKey).

If the InQ of `q is more than thr of the total number of InQ, then
the initiator messages the involved nodes to roll-up the correspond-
ing trees to this level by re-inserting their tuples. If the re-indexing
criterion for lq is not fulfilled and since statistic information has
been collected, the querying node examines if a drill-down to a
level `i ≥ MaxPivotLevel (the equality is for the case that all the
involved trees do not have the same pivot level) is dictated by the
collected statistics. Our intention is to take advantage of the fact
that the querying node has now a more global view of the InQ per
level. It is possible to find a level `i ≥ MaxPivotLevel to be the
most popular but this tendency not to appear in the partial views
of the involved nodes. In this case, the query initiator informs the
involved nodes that a drill-down to this level is needed. We call
this procedure Group-Drill-down, since more than one nodes
participate in the drill-down. All the trees with the queried value in
`q drill-down to the new pivot level. If the new pivot level is equal
to the MaxPivotLevel, the trees already in the MaxPivotLevel do
not perform any action. If a re-indexing operation is not needed, no
action is taken other than the creation of a soft-state index for this
value.

Lock mechanisms are activated during the time that a re-indexing
decision is being made. The purpose of this locking is to avoid
examining the same re-indexing possibility multiple times for con-
current lookups on specific trees. Locks are revoked after the com-
pletion of an ongoing procedure or after a short period of time. The
steps described in Algorithms 1 and 2 are performed, only if the
corresponding locks are inactive. Otherwise the described proce-
dures are not performed and only the query is answered.

Examples of the described re-indexing operations are applied in
the trees of Figure 3 with root value ‘biomed’. The two trees of
Figure3(a) are stored in different nodes of the DHT overlay and are
considered the initial state before any re-indexing operation. We
suppose that a query for ‘Spain’ triggers a drill-down operation.
The result is shown in Figure 3(b). On the other hand, a query for
‘biomed’ may result in a roll-up to the root level depicted in Figure
3(c) or a Group-Drill-down to the Region level depending on the

Algorithm 1 Decision Algorithm in the node answering a query
pivotlevel: current pivot level
`q: the queried level of the flooded or indexed value
NotPivotKey: the flooded or indexed value
InQtot : rate of incoming queries for the tree with NotPivotKey
InQini: initial minimum rate to allow re-index operations
InQlpop : rate of incoming queries for the most popular level
action: the decided action
`pop⇐ FindMostPopularLevel
if `q > pivotlevel then

if (InQtot > InQini) AND (`pop > pivotlevel) AND
(InQ`pop > thr× InQtot ) then

Drill-down to lpop
action⇐ NoAction

else if NotPivotKey is NOT indexed then
action⇐CreateIndex

else
action⇐ NoAction

end if
else if `q < pivotlevel then

if (InQtot > InQini) AND (`q = `pop) AND (InQ`q > thr×
InQtot ) then

action⇐ PositiveToRollup
else if NotPivotKey is NOT indexed then

action⇐CreateIndex
else

action⇐ NoAction
end if

end if

total InQ per level. The Group-Drill-down results to the trees of
Figure 3(d) and differs from the simple drill-down, since all the
trees drill-down to `3.

3.5 Updates
An update is the procedure followed during the insertion of a

tuple, when its root key already exists in the overlay. The update
procedure comprises of two consecutive phases: the insertion of
the tuple and the updating of any existing indices for the values of
the tuple. The insertion phase presents minor differences compared
to the insert procedure.

The updates of the existing datasets is a more complicated pro-
cedure. During the insertion of new tuples, it is critical to select
the correct pivot level so as to ensure the correctness of the lookup
operations. The selection of the pivot level is not simple, since the
pivot levels of the stored trees of a specific root key may vary due
to performed re-indexing operations.

The following assumptions are made:

• If a new tuple contains a pivot key, then this key should be
used during insertion. Otherwise, lookups for this value will
return only the tuples, that existed before this operation.

• Even if none of the values belonging to the specific tuple
have been used as pivot keys, they may have already been
stored in the network. The selection of such a value as pivot
key would result in the discovery of the new tuple only in a
later search. Therefore, we consider that the pivot level be
equal to the MaxPivotLevel in this case. Re-indexing opera-
tions would take over to find the most appropriate pivot level
of this tuple.

The difficulty of updates increases because the information about
the stored pivot values and the MaxPivotLevel is distributed over



Algorithm 2 Decision Algorithm in the querying node
lq: the queried level of the flooded or indexed value
NotPivotKey: the flooded or indexed value
action: the required action by involved nodes {action =
PositiveToRollup if at least one node is possitive to roll-up}
if action = PositiveToRollup then

Gather statistic information
Calculate InQ for each level
`pop⇐ FindMostPopularLevel
MaxPivotLevel⇐ FindMaxPivotLevel
if (`q = `pop) AND (InQ`pop > thr× InQtot ) then

Roll-up to lpop
else if (`pop ≥MaxPivotLevel) AND (InQ`pop > thr× InQtot )
then

Group-Drill-down to `pop
else if NotPivotKey is NOT indexed then

Create Index for NotPivotKey
end if

else if action = CreateIndex then
Create Index for NotPivotKey

end if

the overlay. We have implemented a distributed catalogue by cre-
ating an index among the node responsible for the root key and the
nodes with the pivot keys, namely a record with the root key and
the corresponding pivot keys. This enhancement allows online up-
dates with the system continuing to efficiently serve requests of the
users.

During a new tuple insertion, a lookup operation for the root
key is performed. The responsible node is contacted and it finds
out if any value of the tuple corresponds to a pivot key. In this
case, the tuple is stored to the responsible node for the pivot key
and its new values below the pivot level are added as a new branch
to the existing tree. In the opposite case, the hashed value of the
MaxPivotLevel is considered as the pivot key of this tuple during
its insertion in the overlay. The existence of trees with equal values
above the pivot level is not excluded by this assumption and neither
is the existence of corresponding indices. These indices should be
updated so as indexed lookups to return complete answers. The
node storing the tuple initiates lookups for each `i, where 0 < `i <
pivotlevel and the corresponding indices are informed about the
new tuple.

Examples for the possible cases during an update are depicted in
Figure 2(c). The node holding the index for the root key ‘biomed’
concludes that the none value of the tuple ‘(biomed, Tier2, Swe-
den, SWsite1)’ corresponds to an existing pivot key. Moreover,
it is aware that the MaxPivotLevel for its trees is the Region
and thus the tuple is inserted with ‘Sweden’ as its pivot key. The
new pivot key is also added in the list of pivot keys for this root
key. However, the value ‘Tier2’ is already indexed. During lookup
for the value ‘Tier2’ according the update procedure, the respon-
sible node is discovered and a new index among this node and
the node with actual data is created. During the update for tuple
‘(biomed,Tier2,Spain,SPsite2)’, the node with ‘biomed’ index pro-
ceeds in the insertion of tuple with ‘Spain’ as pivot key, resulting to
the creation of a new branch in the existing tree. The indexed value
‘Tier2’ is not affected and no further action is taken.

4. CASE STUDY: GRID INFORMATION
SERVICES

A motivating scenario for the usefulness of the proposed system
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Figure 3: Examples of drill-down and roll-up operations

can be found in the collection of information produced by infor-
mation services in Grid environments. Grid computing resources
and services advertise a large amount of data, which are used by
multiple people across multiple administrative domains. This in-
formation is not intended only for event handling, as in traditional
monitoring systems for networks and cluster computing. The pro-
duced information by various mechanisms such as cluster moni-
tors (Ganglia [2], Hawkey [4]), services (GRAM, RLS [6]), queu-
ing systems, etc, is organized and provided to various applications,
such as accounting systems, schedulers, portals, etc. For this rea-
son, the key to the design of Grid Information Services is to identify
the information that is required and to determine how to best make
this information available.

In recent Grid Monitoring Architectures (MDS, R-GMA), data
concerning the state of the infrastructure are collected by a com-
bination of various monitoring systems on a resource base and or-
ganized by information producers (or providers). In the previous
generation of monitoring architectures, the information producers
were organized in a hierarchical structure and published their data,
which finally were collected and stored in a central LDAP-based
database. In more modern approaches, the information producers
are known to the system by subscribing themselves to an Index ser-
vice (MDS) or a Registry (R-GMA). Information consumers ask
this structure for the location of the producers and contact all of
them in order to acquire the needed data. Moreover, various ag-
gregator services exist that collect information (via subscription,
polling or execution) from information producers using a common
configuration mechanism to specify the type of data and the col-
lected information. For example, VOs maintain such services to



maintain VO-wide resource information by collecting data from the
Information servers running at many sites. Due to the large volume
of data and their usefulness to various services, we strongly believe
that a solution for efficient storage and indexing of the produced in-
formation adapting to the requests of users or services contributes
to the operability and the performance of a Grid Infrastructure.

Our system is a complete solution for the organization and stor-
age of such information. The proposed scheme can be integrated in
a Grid environment providing a fully decentralized solution. In this
architecture, the nodes hosting the information producers and used
for information-related purposes are organized in a DHT-based over-
lay, as shown in Figure 4. The routing of messages among these
resources is performed according to the DHT protocol and no cen-
tralized structures are required. The P2P overlay introduces a scal-
able solution, while data and query load balancing is achieved. A
concept hierarchy is defined for the various levels of aggregation
that characterize the produced data and the existing needs. Each
numerical fact is described by the corresponding concept hierar-
chy. No off-line collection and processing of data is required, since
online updates are supported. The re-indexing mechanism enables
the summarization of data according to the incoming queries. The
Registry or Index service with the locations of service instances is
implemented in a distributed manner. Data are distributed among
the nodes of the DHT and queried according to our method. While
in existing approaches a consumer queries all the information pro-
ducers, in our system only the nodes responsible for data according
to the aggregation level are contacted reducing the communication
and processing cost.

An example for the usage of the described integration can be
considered for the service providing information for accounting
purposes of the EGEE Accounting Portal [1]. This service uses
APEL [11], which is a log processing application to filter data pro-
duced in each site. Afterwards, R-GMA producers collect data
from sites and streams them to a centralized database. The cen-
tral database collects millions of records per grid job and stores
them offline. Due to the enormous volume of data, only summa-
rized views of the various metrics such as Number of jobs, Nor-
malized CPU usage, SumCPU, CPU efficiency, etc, are computed
offline and become available to the users. Needless to say, the
right balance between quantity and timeliness of information, on
the one hand and associated costs on the other should be consid-
ered for this centralized solution. A concept hierarchy describing
the measurements needed for the above metrics is the VO concept
hierarchy. We selected this hierarchy, since this application allows
queries with group by per VO, per Site, per Category and per
Region (or per country). In our system, the offline database is
distributed across the DHT overlay. A query of a user starts from
any node and ends up in the node(s) with relative data, where it is
being processed. Our indexing scheme adapts the summarization
level of the produced records from more general ones (level VO) to
more detailed ones (level Site) according the incoming queries.

5. EXPERIMENTAL RESULTS

5.1 Simulation Setup
We now present a comprehensive simulation-based evaluation of

our scheme. Our performance results are based on a heavily mod-
ified version of the FreePastry simulator [12], although any DHT
implementation could be used as a substrate. We assume a net-
work size of 256 nodes, all of which are randomly chosen to initiate
queries.

In our simulations, we use synthetically generated data. Our data
is a tree with each value having at most one parent. Each distinct

clients

Information
Producers

Figure 4: The proposed architecture for the Information Sys-
tem

value of `i has a constant number of children in `i+1. By default,
our data comprise of 100k tuples, organized in a 4-level hierarchy
(see Figure 1(a)) with one numerical fact (e.g., CPU_time). The
number of distinct values per level are |`0 = 100|, |`1 = 1000|, |`2 =
10000| and |`3 = 100000|. The level of insertion is, by default, `1,
unless stated otherwise.

For our query workloads, we consider a two-stage approach: we
first identify which level our query will target according to the lev-
elDist distribution; the requested value is then chosen from that
level following the valueDist distribution. In our experiments, we
use the Zipfian (pi ∼ 1/iθ) distribution for levelDist, while we ex-
press a bias inside each level using the uniform, 80/20, 90/10 and
99/1 distributions for valueDist.

Generated queries arrive at an average rate of 1 query
time_unit , in al-

most 50k time units total simulation time. We present results for
queries on a single dimension with multiple levels of hierarchy.
Our default thr value is set to 0.3, which is a large enough value to
avoid very frequent re-indexing attempts. Simulations with differ-
ent values of threshold around this default show small qualitative
difference. The default value of W, which controls how quickly
the system can adapt to changes, is set to 1000 time units. For our
experiments the value of Imax is set to 1000. Finally, we assume a
practically infinite value of TTL (indices never expire).

In this section, we intend to demonstrate the performance and
adaptability of our system under various conditions. Our goal is
to show that we prove highly efficient under a variety of data and
load distributions and can quickly adapt to sudden changes in skew
without any modification to the default parameters. Specifically,
we measure the percentage of queries which are answered without
flooding (precision).

5.2 Performance Under Different Levels of Skew
In the first set of experiments we identify the behavior of our

system under a variety of query loads. Specifically, we vary the
number of queries directed to each level by increasing the θ pa-
rameter in the levelDist distribution. For each value of θ, we also
choose values inside each level using four different distributions.

In Figure 5, data are skewed towards `0. As θ increases for lev-
elDist, the performance of our method improves: Re-indexing is
performed sooner as more queries take place and the exact matches
due to the chosen pivot level increase. By increasing the skew for
valueDist, we observe remarkably high precision rates (close to
100%), because both the ratio of popular queries and the density
of queries for certain tuples increase. Another point that plays a
big role is the limited number of distinct values of `0. Obviously
this is quite small compared to the last level, thus enabling soft-
indexing and faster re-indexing. For a set θ value, the method per-
forms justifiably better as the distribution becomes more skewed:
More queries exist for fewer distinct values. Finally, we notice that
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Figure 5: Precision when skew directed towards `0
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Figure 6: Precision when skew directed towards `3

the larger the θ value, the smaller the difference in precision among
the different valueDist distributions.

Figure 6 shows results where our workload favors `3. Again, we
notice a similar trend in performance as valueDist becomes more
biased and our method shows high precision values, albeit reduced
compared to the previous case. We notice that the precision for the
same valueDist distribution decreases as θ increases: This is due
to the fact that `3 has a considerably larger number of values. By
increasing the number of queries for those values, we increase (rel-
ative to the choice of valueDist of course) the probability of queries
to non-indexed values. Nevertheless, the decrease is smaller as val-
ueDist becomes more skewed.

5.3 Testing against multiple bias points
In the next experiment, we test our method against a more chal-

lenging type of workload (MULTI): While different levels receive
an equal number of queries, nevertheless we target a different part
of a data tree from each level. Specifically, we divide all levels in
quarters and target (using different values of valueDist) one quarter
per level so that no quarter is related with any other in the data tree.
This is a very challenging workload, as it forces the method to store
different data at different levels of granularity. Table 1 summarizes
the results, where besides the precision we document the cost in
number of re-indexed tuples as well as the number of total roll-up
and drill-down operations.

Our technique proves extremely efficient in all four workloads,
achieving very high precision (between 92% and 100%) at low cost:
The largest number of operations occur when we uniformly query
the different values in which case 75% of the tuples are re-hashed
and re-inserted from re-indexing operations. As the level of skew
increases, so does the number of re-indexing calls. This clearly
demonstrates that our method adjusts its operation according to the
need: The number of trees being re-indexed is proportional to the
number of unique trees that are popular. This is a highly desirable
property since for most applications we anticipate both dynamic
and highly skewed loads.

5.4 Performance in dynamic environments
The adaptiveness and performance of the proposed system in a

dynamic environment is examined by this set of experiments. The
query distribution encloses a sudden change in skewness from level
`0 towards `3 and vice versa in the middle of the simulated queries.

Figure 7 demonstrates the behavior of the system when the query
load shifts from `0 towards `3. The results show that, in all cases,
our system increases its precision due to the combination of re-
indexing operations and soft-state indices and the majority of ques-
tions are answered by exact match lookups. The precision reaches
over 90% for θ = 2.0 and over 80% for θ = 1.0 before the change
in skew. In the transitional stage, the flooding of the queries in-
creases but the system rapidly manages to recover and regain its
performance characteristics (after at most 5% of the queries). The

Table 1: Performance comparison for the MULTI workload
over different values of valueDist

valueDist precision #roll-ups #rolled-up #drill-downs re-inserts
(%) trees (%)

uniform 92.0 25 250 500 75
80/20 94.3 25 250 171 42
90/10 95.2 25 250 51 30
99/1 99.5 1 10 6 1.6

steep decrease in precision happens at the exact time of the shift in
the workload: A much larger number of distinct values belong to
`3, thus the existence of useful indices is less probable. The con-
tribution of soft-state indices is not sufficient to handle the query
load until drill-down operations take place. In this stage, the larger
the value of θ, the larger the decrease in precision and the faster the
recovery: As we show in Figure 8, where the query loads for val-
ueDist 90/10 are considered, both exact match and indexed lookups
are fewer for θ = 2.0. This happens because queries are more
skewed towards `3 and benefit even less from the already rolled-
up trees. However, as θ increases, drill-down decisions are taken
faster, favoring the increase of the exact match queries that answer
the majority of the requests.

The precision of the algorithm is tested against a sudden shift
from `3 to `0 for various workloads and displayed in Figure 9. Dur-
ing the steady stages of the simulation, similar trends to the ones of
one directional skew are observed and the system presents high per-
formance over 80% for all workloads. For more skewed valueDist
is, the higher the precision, since the number of popular values
shrinks and drill-down operations are performed faster increasing
the adaptiveness of the system. After the change in the direction of
skew, less queries are flooded for the θ = 2.0 workloads (behavior
that contrasts to the previous experiment). Figure 10 demonstrates
a more comprehensive view of the system after the change in skew.
Indices take over to serve lookups immediately. Due to the smaller
number of distinct values in higher levels, indices perform well.
However, the consecutive roll-ups destroy the existing indices and
the performance of the system is influenced negatively. The system
regains its performance by the rapid increase in the exact lookups.

The comparison of results among the two shifts of the workload
reveals that the soft-state indices are capable to preserve the high
precision of the system in case of a skew towards higher levels
due to the limited number of different values. On the contrary, the
adaptiveness of the system significantly depends on the re-indexing
operations, when lower levels of the hierarchy are the most popu-
lar. Nevertheless, in both cases, the system needs bounded time to
reorganize its indexing mechanism and achieve high performance.
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Figure 7: Precision over time for various workloads,
when skewness changes from `0 to `3
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Figure 8: Precision over time of non-flooded queries for
valueDist 90/10, when skew is directed from `0 to `3
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Figure 9: Precision over time for various workloads when
the skewness of workload changes from `3 to `0
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Figure 10: Precision over time of non-flooded queries for
valueDist 90/10, when skew is directed from `3 to `0

5.5 Performance for dataset of the APB bench-
mark

The adaptiveness of the system is also tested using some real-
istic data. For this reason, we generated query sets by the APB-1
benchmark [9]. APB-1 creates a database structure with multiple
dimensions and generates a set of business operations reflecting
basic functionality of OLAP applications. For our experiments,
we focus on the product dimension, a steep hierarchy of 6 levels
(the bottom level contains 90% of the members). In more detail, the
number of distinct values per level are |`0 = 50|, |`1 = 150|, |`2 =
800|, |`3 = 3050|, |`4 = 6950| and |`5 = 93050|. Another character-
istic of the specific dataset is that the number of children per node
is not constant, as in the synthetically generated datasets of the pre-
vious experiments. The query load is skewed towards the lower
levels of the hierarchy and 75% of queries refer to values of the `4
and `5.

The results are depicted in Figure 11, where the precision over
time for various initial levels of insertion is shown. It is remark-
able that the system adapts to the query load and presents similar
performance despite the selection of the level used as pivot level
during initial insertions, thus the re-indexing operations -mainly
drill-down operations towards `4 and `5 and soft-state indices serve
to the incremental precision, which reaches values near 100%.

5.6 Updates
In order to measure the cost of incrementally updating our data-

set, we randomly select the 90% of the tuples, executed each of
the described query workloads in 5.2 and finally update the dataset
by inserting the remaining 10% of the tuples. We note here that
the workload plays an important role in the update process as it
affects the indexing levels of the stored tuples and, therefore, the
update cost (as tuples may have common attributes with existing

Table 2: Number of average lookups for updating indices per
insertion for different values of valueDist

Skew towards `0 Skew towards `3
valueDist

θ = 1.0 θ = 2.0 θ = 1.0 θ = 2.0

uniform 0.0 0.0 1.99 1.98
80/20 0.01 0.0 1.8 1.16
90/10 0.14 0.0 0.39 0.25
99/1 0.0 0.0 0.01 0.02

ones). The cost in messages for storing each of the initial tuples
is one lookup message so as to locate the root key and one inser-
tion message to store the tuple. Further lookup messages are not
needed, since no other indices than the ones among the root keys
and corresponding pivot levels have been created yet. The selected
pivot level for the initial tuples is, by default, `1. The conducted
experiments regard the update cost in terms of additional lookups
operations to inform existing indices about the appearance of the
new tuples. In these set of experiments, we modified the inserted
dataset. Table 2 contains the average number of lookups per inser-
tion for updating the soft-state indices. This cost can be considered
as negligible when the skew is towards high levels of the hierarchy.
The maximum documented cost for skewed workloads towards `3
and uniform valueDist is close to 2. The less skewed the distribu-
tion the bigger the possibility of soft-index existence in levels other
than the popular one. As skew increases, this cost also diminishes.

5.7 Other experimental results
Due to space limitations, we briefly describe other conducted ex-

periments. We experimented by varying the number of concurrent
queries per time unit for the presented workloads. The experimen-
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Figure 12: Precision for concurrent queries for valueDist 90/10

tal results for workloads skewed towards l0 and l3 are shown in
Figure 12. The measured precision presents negligible variation,
thus showing that the performance of the system remains consis-
tently high while the system scales to a considerable number of
concurrent users.

Moreover, experiments conducted with up to 1K nodes showed
little qualitative difference. Simulation results for different val-
ues of threshold showed that the fluctuation of the precision for
0.2 ≤ thr ≤ 0.4 is at most 2%. For values thr ≥ 0.5 and uniform
workloads, the fluctuation reaches 10%. For thr ≤ 0.3, the initial
number of queries to allow re-indexing should increase in order to
avoid redundant operations. Experiments for various data distri-
butions with different number of distinct values per level showed
no qualitative differences. Another important observation is that
by varying the default pivot level the steady-state performance of
our algorithm is not affected, since the re-indexing operations and
soft-state indices adapt the pivot levels appropriately.

6. CONCLUSIONS
In this work we described a highly adaptive, scalable, on-line

technique in order to store hierarchical data and do efficient query
processing on them. Our scheme distributes large amounts of data
over a DHT overlay in a way so that the hierarchy semantics are
maintained while eliminating single points of failure and minimiz-
ing data unavailability. The distinctive characteristic of our method
is the adaptive indexing over the data: The stored hierarchies are
indexed over variable levels according to the granularity of the in-
coming queries. Using limited only knowledge, peers decide on the
indexing level of their stored tuples so that flooding is minimized.
Moreover, there is no need for off-line updates as our system con-
sistently updates the dataset online at low cost.

We discussed one interesting application of our method over a
Grid Information System: Distributing the sources of useful data
over a grid system presents significant advantages over the existing
approaches. Moreover, our unique re-indexing mechanism enables

automatic aggregation of older data and more detailed views of re-
cent ones.

Our experimental evaluation over multiple dynamic and chal-
lenging workloads confirmed our premise: Our system manages
to efficiently answer the large majority of queries using very few
messages. It is especially effective in skewed workloads, adapts to
sudden shifts in skew and updates datasets in a fast, reliable and
cost-efficient manner.
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